Главная / По специализации работника / Комплексам «начальная школа - детский сад»

Календарно-тематическое планирование 3 класс по математике по программе ПНШ Предлагаемый начальный курс математики имеет цели: ·           Математическое развитие младшего школьника: использование матема

Скачать
430 КБ, 592115.doc Автор: Миронова наталья Олеговна, 30 Мар 2015

Математика 3 класс ПНШ

Пояснительная записка

Рабочая программа составлена на основании следующих нормативно-правовых документов:

1. Конституция Российской Федерации (Статья 43 Конституции РФ, каждый имеет право на образование. Гарантируются общедоступность и бесплатность дошкольного, основного общего и среднего профессионального образования в государственных или муниципальных образовательных).

2. Закон Российской Федерации «Об образовании» (ст.7 Стандарт вводится в систему нормативно-правового обеспечения развития образования).

3. Постановление Правительства Российской Федерации от 24 февраля 2009 года № 142 «О Правилах разработки и утверждения федеральных государственных образовательных стандартов»

4. . Приказ Министерства образования и науки Российской Федерации от 06 октября 2009 г. N 373 «Об утверждении и введении в действие федерального государственного образовательного стандарта начального общего образования».

5. Приказ Министерства образования и науки Российской Федерации от 26 ноября 2010 г. N 1241 «О внесении изменений в федеральный государственный образовательный стандарт начального общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 6 октября 2009 г. N 373».

6. Приказ Министерства образования и науки Российской Федерации от 22 сентября 2011 г. N 2357 «О внесении изменений в федеральный государственный образовательный стандарт начального общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 6 октября 2009 г. N 373».

7. Приказ Министерства образования и науки Российской Федерации от 18 декабря 2012 г. N 1060 «О внесении изменений в федеральный государственный образовательный стандарт начального общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 6 октября 2009 г. N 373».

8. Примерная основная образовательная программа образовательного учреждения. Начальная школа / [сост. Е. С. Савинов]. — 4­е изд., перераб. — М. : Просвещение, 2013. — 223 с. — (Стандарты второго поколения).

9. Письмо Министерства общего и профессионального образования РФ от 19.11.98 г. № 1561/14-15 «Контроль и оценка результатов обучения в начальной школе».

10. Письмо Министерства образования Российской Федерации от 03.06.2003г. №13-51-120/13 “О системе оценивания учебных достижений младших школьников в условиях безотметочного обучения в общеобразовательных учреждения».

11.Программы по учебным предметам. Примерный учебный план :1-4 кл.:в 2 ч./Сост. Р.Г.Чуракова – М.: Академкнига/Учебник, 2012.(Проект «Перспективная начальная школа»)

Программа курса разработана на основе федерального государственного образовательного стандарта начального общего образования с учетом межпредметных и внутрипредметных связей, логики учебного процесса, задачи формирования у младшего школьника умения учиться.

Предлагаемый начальный курс математики имеет цели: · Математическое развитие младшего школьника: использование математических представлений для описания окружающей действительности в количественном и пространственном отношении; формирование способности к продолжительной умственной деятельности, основ логического мышления, пространственного воображения, математической речи и аргументации, способности различать верные и неверные высказывания, делать обоснованные выводы. · Освоение начальных математических знаний. Формирование умения решать учебные и практические задачи математическими средствами: вести поиск информации (фактов, сходства, различий, закономерностей, оснований для упорядочивания и классификации, вариантов); понимать значение величин и способов их измерения; использовать арифметические способы для разрешения сюжетных ситуаций (строить простейшие математические модели); работать с алгоритмами выполнения арифметических действий, решения задач, проведения простейших построений. Проявлять математическую готовность к продолжению образования. · Воспитание критичности мышления, интереса к умственному труду, стремления использовать математические знания в повседневной жизни. Таким образом, предлагаемый начальный курс математики призван не только ввести ребенка в абстрактный мир математических понятий и их свойств, охватывающий весь материал, содержащийся в примерной программе по математике в рамках федерального государственного образовательного стандарта начального общего образования второго поколения, но и дать первоначальные навыки ориентации в той части реальной действительности, которая описывается (моделируется) с помощью этих понятий, а именно: окружающий мир как множество форм, как множество предметов, отличающихся величиной, которую можно выразить числом, как разнообразие классов конечных равночисленных множеств и т. п., а также предложить ребенку соответствующие способы познания окружающей действительности. Основная дидактическая идея курса может быть выражена следующей формулой: через рассмотрение частного к пониманию общего для решения частного. При этом ребенку предлагается постичь суть предмета через естественную связь математики с окружающим миром. Все это означает, что знакомство с тем или иным математическим понятием осуществляется при рассмотрении конкретной реальной или псевдореальной (учебной) ситуации, соответствующий анализ которой позволяет обратить внимание ученика на суть данногоматематического понятия. В свою очередь, такая акцентуация дает возможность добиться необходимого уровня обобщений без многочисленного рассмотрения частностей. Наконец, понимание общих закономерностей и знание общих приемов решения открывает ученику путь к выполнению данного конкретного задания даже в том случае, когда с такого типа заданиями ему не приходилось еще сталкиваться. Логикодидактической основой реализации первой части формулы является неполная индукция, которая в комплексе с целенаправленной и систематической работой по формированию у младших школьников таких приемов умственной деятельности, как анализ и синтез, сравнение, классификация, аналогия и обобщение, приведет ученика к самостоятельному «открытию» изучаемого математического факта. Вторая же часть формулы носит дедуктивный характер и направлена на формирование у учащихся умения конкретизировать полученные знания и применять их к решению поставленных задач. Отличительной чертой настоящего курса является значительное увеличение роли, которую мы отводим изучению геометрического материала и изучению величин, что продиктовано той группой поставленных целей, в которых затрагивается связь математики с окружающим миром. Без усиления этих содержательных линий невозможно достичь указанных целей, так как ребенок воспринимает окружающий мир, прежде всего, как совокупность реальных предметов, имеющих форму и величину. Изучение же арифметического материала, оставаясь стержнем всего курса, осуществляется с возможным паритетом теоретической и прикладной составляющих, а в вычислительном плане особое внимание уделяется способам и технике устных вычислений. Содержание всего курса можно представить как взаимосвязанное развитие пяти основных содержательных линий: арифметической, геометрической, величинной, алгоритмической (обучение решению задач) и информационной (работа с данными). Что же касается вопросов алгебраического характера, то они рассматриваются в других содержательных линиях – главным образом в арифметической и алгоритмической.

Общая характеристика учебного предмета

Основная дидактическая идея курса может быть выражена следующей формулой: «через рассмотрение частного к пониманию общего для решения частного». При этом ребенку предлагается постичь суть предмета через естественную связь математики с окружающим миром. Все это означает, что знакомство с тем или иным математическим понятием осуществляется при рассмотрении конкретной реальной или псевдореальной (учебной) ситуации, соответствующий анализ которой позволяет обратить внимание ученика на суть данного математического понятия.

В свою очередь, такая акцентуация дает возможность добиться необходимого уровня обобщений без многочисленного рассмотрения частностей. Наконец, понимание общих закономерностей и знание общих приемов решения открывает ученику путь к выполнению данного конкретного задания даже в том случае, когда с такого типа заданиями ему не приходилось еще сталкиваться. Логико-дидактической основой реализации первой части формулы является неполная индукция, которая в комплексе с целенаправленной и систематической работой по формированию у младших школьников таких приемов умственной деятельности, как анализ и синтез, сравнение, классификация, аналогия и обобщение, приведет ученика к самостоятельному «открытию» изучаемого математического факта. Вторая же часть формулы носит дедуктивный характер и направлена на формирование у учащихся умения конкретизировать полученные знания и применять их к решению поставленных задач. Отличительной чертой настоящего курса является значительное увеличение той роли, которую мы отводим изучению геометрического материала и изучению величин, что продиктовано той группой поставленных целей, в которых затрагивается связь математики с окружающим миром. Без усиления этих содержательных линий невозможно достичь указанных целей, так как ребенок воспринимает окружающий мир, прежде всего, как совокупность реальных предметов, имеющих форму и величину. Изучение же арифметического материала, оставаясь стержнем всего курса, осуществляется с возможным паритетом теоретической и прикладной составляющих, а в вычислительном плане особое внимание уделяется способам и технике устных вычислений. Содержание всего курса можно представить как взаимосвязанное развитие пяти основных содержательных линий: арифметической, геометрической, величинной, алгоритмической (обучение решению задач) и информационной (работа с данными). Что же касается вопросов алгебраического характера, то они рассматриваются в других содержательных линиях, главным образом, арифметической и алгоритмической.

Арифметическая линия, прежде всего, представлена материалом по изучению чисел. Числа изучаются в такой последовательности: натуральные числа от 1 до 10 и число 0 (1-е полугодие 1 класса), целые числа от 0 до 20 (2-е полугодие 1 класса), целые числа от 0 до 100 и «круглые» числа до 1000 (2 класс), целые числа от 0 до 999 999 (3 класс), целые числа от 0 до 1 000 000 и дробные числа (4 класс). Знакомство с числами класса миллионов и класса миллиардов (4 класс) обусловлено, с одной стороны, потребностями курса «окружающий мир», при изучении отдельных тем которого учащиеся оперируют с такими числами, а с другой стороны, желанием удовлетворить естественный познавательный интерес учащихся в области нумерации многозначных чисел. Числа от 1 до 5 и число 0 изучаются на количественной основе. Числа от 6 до 10 изучаются на аддитивной основе с опорой на число 5. Числа второго десятка и все остальные натуральные числа изучаются на основе принципов нумерации (письменной и устной) десятичной системы счисления. Дробные числа возникают сначала для записи натуральной доли некоторой величины. В дальнейшем дробь рассматривается как сумма соответствующих долей, и на этой основе выполняется процедура сравнения дробей. Изучение чисел и их свойств представлено также заданиями на составление числовых последовательностей по заданному правилу и на распознавание (формулировку) правила, по которому составлена данная последовательность, представленная несколькими первыми ее членами. Особенностью изучения арифметических действий в настоящем курсе является строгое следование математической сути этого понятия. Именно поэтому при введении любого арифметического действия (бинарной алгебраической операции) с самого начала рассматриваются не только компоненты этого действия, но и в обязательном порядке его результат. Если не введено правило, согласно которому по известным двум компонентам можно найти результат действия (хотя бы на конкретном примере), то само действие не определено. Без результата нет действия! По этой причине мы считаем некорректным рассматривать, например, сумму до рассмотрения сложения. Сумма указывает

на намерение совершить действие сложения, но если сложение еще не определено, то каким образом можно трактовать сумму? В этом случае вопрос остается без ответа.

Арифметические действия над числами изучаются на следующей теоретической основе и в такой последовательности.

•Сложение (систематическое изучение начинается с первого полугодия 1 класса) определяется на основе объединения

непересекающихся множеств и сначала выполняется на множестве чисел от 0 до 5. В дальнейшем числовое множество, на котором выполняется сложение, расширяется, причем это расширение происходит с помощью сложения (при сложении уже

известных учащимся чисел получается новое для них число).

Далее изучаются свойства сложения, которые используются при проведении устных и письменных вычислений. сложение многозначных чисел базируется на знании таблицы сложения однозначных чисел и поразрядном способе сложения.

•Вычитание (систематическое изучение начинается со второго полугодия 1 класса) изначально вводится на основе вычитания подмножества из множества, причем происходит это когда учащиеся изучили числа в пределах первого десятка. Далее устанавливается связь между сложением и вычитанием, которая базируется на идее обратной операции. На основе этой связи выполняется вычитание с применением таблицы сложения, а потом осуществляется переход к рассмотрению случаев вычитания многозначных чисел, где основную роль играет поразрядный принцип вычитания, возможность которого базируется на соответствующих свойствах вычитания.

•Умножение (систематическое изучение начинается со 2 класса) вводится как сложение одинаковых слагаемых. сначала учащимся предлагается освоить лишь распознавание и запись этого действия, а его результат они будут находить с помощью сложения. отдельно вводятся случаи умножения на 0 и на 1. В дальнейшем составляется таблица умножения однозначных чисел, используя которую, а также соответствующие свойства умножения, учащиеся научатся умножать многозначные числа.

•Деление (первое знакомство во 2 классе на уровне предметных действий, а систематическое изучение начиная с 3 класса)

вводится как действие, результат которого позволяет ответить на вопрос: сколько раз одно число содержится в другом? Далее устанавливается связь деления и вычитания, а потом — деления и умножения. Причем, эта последняя связь будет играть основную роль при обучении учащихся выполнению действия деления. Что касается связи деления и вычитания, то ее рассмотрение обусловлено двумя причинами: 1) на первых этапах обучения делению дать удобный способ нахождения частного; 2) представить в полном объеме взаимосвязь арифметических действий I и II ступеней. В дальнейшем (в 4 классе) операция деления будет рассматриваться как частный случай операции деления с остатком.

Геометрическая линия выстраивается следующим образом.

В третьем классе изучаются виды треугольников (прямоугольные, остроугольные и тупоугольные; разносторонние и равнобедренные), равносторонний треугольник рассматривается как частный случай равнобедренного, вводится понятие высоты треугольника, решаются задачи на разрезание и составление фигур, на построение симметричных фигур, рассматривается куб и его изображение на плоскости. При этом рассмотрение куба обусловлено двумя причинами: во-первых, без знакомства с пространственными фигурами в плане связи математики с окружающей действительностью будет потеряна важнейшая составляющая, во-вторых, изучение единиц объема, предусмотренное в четвертом классе, требует обязательного знакомства с кубом.

Линия по изучению величин представлена такими понятиями, как длина, время, масса, величина угла, площадь, вместимость (объем), стоимость. Умение адекватно ориентироваться в пространстве и во времени — это те умения, без которых невоз-можно обойтись как в повседневной жизни, так и в учебной деятельности. Элементы ориентации в окружающем пространстве являются отправной точкой в изучении геометрического материала, а знание временных отношений позволяет правильно описывать ту или иную последовательность действий (в том числе строить и алгоритмические предписания). В связи с этим изучению пространственных отношений отводится несколько уроков в самом начале курса. При этом сначала изучаются различные характеристики местоположения объекта в пространстве, а потом характеристики перемещения объекта в пространстве.

Из временных понятий сначала рассматриваются отношения «раньше» и «позже», понятия «часть суток» и «время года»,

а также время как продолжительность. Учащимся дается понятие о «суточной» и «годовой» цикличности.

Систематическое изучение величин начинается уже в первом полугодии первого класса с изучения величины «длина». Сначала длина рассматривается в доизмерительном аспекте. Сравнение предметов по этой величине осуществляется «на глаз» по рисунку или по представлению, а также способом «приложения». Результатом такой работы должно явиться понимание учащимися того, что реальные предметы обладают свойством иметь определенную протяженность в пространстве, по которому их можно сравнивать. Таким же свойством обладают и отрезки. Никаких измерений пока не проводится. Во втором полугодии первого класса учащиеся знакомятся с процессом измерения длины, стандартными единицами длины (сантиметром и дециметром), процедурой сравнения длин на основе их измерения, а также с операциями сложения и вычитания длин.

В третьем классе, кроме продолжения изучения величин «длина» и «масса» (рассматриваются другие единицы этих величин —

километр, миллиметр, грамм, тонна), происходит знакомство и с новыми величинами: величиной угла и площадью. Рассмотрение величины угла продиктовано желанием дать полное обоснование традиционному для начального курса математики вопросу о сравнении и классификации углов. Такое обоснование позволит эту величину и в методическом плане поставить в один ряд с другими величинами, изучаемыми в начальной школе. Работа с этими величинами осуществляется по традиционной схеме: сначала величина рассматривается в «доизмерительном» аспекте, далее вводится стандартная единица измерения, после чего измерение проводится с использованием стандартной единицы, а если таких единиц несколько, то устанавливаются соотношения между ними. Основным итогом работы по изучению величины «площадь» является вывод формулы площади прямоугольника.

В четвертом классе по привычной уже схеме изучается величина «вместимость» и связанная с ней величина «объем». Осуществляется знакомство с некоторыми видами многогранников (призма, прямоугольный параллелепипед, пирамида) и тел вращения (шар, цилиндр, конус).

Линия по обучению решению арифметических сюжетных (текстовых) задач (условно мы ее называем алгоритмической) является центральной для данного курса. Ее особое положение определяется тем, что настоящий курс имеет прикладную направленность, которая выражается в умении применять полученные знания на практике. А это, в свою очередь, связано с решением той или иной задачи. При этом для нас важно не только научить учащихся решать задачи, но и правильно формулировать их, используя имеющуюся информацию. Особое внимание мы хотим обратить на тот смысл, который нами вкладывается в термин «решение задачи»: под решением задачи мы понимаем запись (описание) алгоритма, дающего возможность выполнить требование задачи. Сам процесс выполнения алгоритма (получение ответа задачи) важен, но не относится нами к обязательной составляющей умения решать задачи (получение ответа задачи мы относим, прежде всего, к области вычислительных умений). Такой подход к толкованию термина «решение задачи» нам представляется наиболее правильным.

Во-первых, это согласуется с современным «математическим» пониманием сути данного вопроса, во-вторых, ориентация учащихся на «алгоритмическое» мышление будет способствовать более успешному освоению ими основ информатики и новых информационных технологий. само описание алгоритма решения задачи мы допускаем в трех видах: 1) по действиям (по шагам) с пояснениями, 2) в виде числового выражения, которое мы рассматриваем как свернутую форму описания по действиям, но без пояснений, 3) в виде буквенного выражения (в некоторых случаях в виде формулы или в виде уравнения) с использованием стандартной символики. Последняя форма описания алгоритма решения задачи будет использоваться только после того, как учащимися достаточно хорошо будут усвоены зависимости между величинами, а также связь между результатом и компонентами действий.

Что же касается самого процесса нахождения решения задачи (а в этом смысле термин «решение задачи» также часто употребляется), то мы в нашем курсе не ставим целью осуществить его полную алгоритмизацию. Более того, мы вполне осознаем, что этот процесс, как правило, содержит этап нестандартных (эвристических) действий, что препятствует его полной алгоритмизации. Но частичная его алгоритмизация (хотя бы в виде четкого усвоения последовательности этапов работы с задачей) не только возможна, но и необходима для формирования у учащихся общего умения решать задачи.

Для формирования умения решать задачи учащиеся в первую очередь должны научиться работать с текстом и иллюстрациями: определить, является ли предложенный текст задачей, или как по данному сюжету сформулировать задачу, установить связь между данными и искомым и последовательность шагов по установлению значения искомого. Другое направление работы с понятием «задача» связано с проведением различных преобразований имеющегося текста и наблюдениями за теми изменениями в ее решении, которые возникают в результате этих преобразований. К этим видам работы относятся: дополнение текстов, не являющихся задачами, до задачи; изменение любого из элементов задачи, представление одной и той же задачи в разных формулировках; упрощение и усложнение исходной задачи; поиск особых случаев изменения исходных данных, приводящих к упрощению решения; установление задач, которые можно решить при помощи уже решенной задачи, что в дальнейшем становится основой классификации задач по сходству математических отношений, заложенных в них.

Информационная линия, в которой рассматривается разнообразная работа с данными, как это и предусмотрено стандартом,

распределяется по всем содержательным линиям. В нее включены вопросы по поиску (сбору) и представлению различной информации, связанной со счетом предметов и измерением величин.

Наиболее явно необходимость в таком виде деятельности проявляется в процессе работы над практическими задачами (по всему курсу), задачами с геометрическими величинами (по всему курсу) и задачами с недостающими данными (3 класс, 1 часть и далее). Фиксирование результатов сбора предполагается осуществлять в любой удобной форме: в виде текста (протокола), с помощью табулирования, графического представления. Особое место при работе с информацией отводится таблице.

В 3 классе к уже знакомым учащимся видам «стандартных» таблиц добавляется еще одна очень важная таблица, а именно «Таблица разрядов и классов». Все виды работ с таблицами продолжают активно действовать, но при этом появляются задания, связанные с интерпретацией табличных данных, с их анализом для получения некоторой «новой» информации.

Еще одной удобной формой представления данных является использование диаграмм. При этом используются как диаграммы сравнения (столбчатые или полосчатые), так и структурные диаграммы (круговые). Первое упоминание о диаграмме дается на страницах учебника 3 класса: изучается специальная тема «Изображение данных с помощью диаграмм». При этом появление диаграмм сравнения как средства представления данных подготовлено введением такого понятия, как «числовой луч». Именно горизонтальное расположение числового луча (что является наиболее привычным расположением) привело к тому, что из двух возможных типов расположения диаграммы сравнения (вертикального или горизонтального) мы в основном используем горизонтальное их расположение (полосчатые диаграммы). Но при этом не следует думать, что вертикальные (столбчатые) диаграммы чем-то принципиально отличаются от горизонтальных. Эта мысль доводится и до понимания учащихся: они работают с вертикальными и горизонтальными диаграммами на общих основаниях. Преимущество горизонтальных диаграмм проявляется еще и в том, что на страницах учебника их можно расположить более компактно.

Знакомство учащихся со структурной диаграммой, которая представлена в круговой форме, происходит (и может произойти) только после того, как будет введено понятие доли и учащиеся научатся делить круг на заданное число равных частей.

Алгебраический материал в настоящем курсе не образует самостоятельной содержательной линии в силу двух основных причин: во-первых, этот материал, согласно требованиям нового стандарта, представлен в содержании курса в очень небольшом объеме (в явном виде лишь в тех вопросах, которые касаются нахождения неизвестного компонента арифметического действия), а во-вторых, его направленность главным образом носит пропедевтический характер. В 3 классе рассматриваются уравнения с неизвестным множителем, неизвестным делителем, неизвестным делимым и так же выводятся соответствующие правила.

Место учебного предмета в учебном плане

В соответствии с Примерным учебным планом для образовательных учреждений, использующих систему «Перспективная начальная школа», курс математики изучается в 3классе по четыре часа в неделю, на 136 часов (34 учебных недели).

В учебном плане МБОУ СОШ № 38 выделено по 4 часа из федерального компонента на изучение математики в 3классе.

Ценностные ориентиры содержания курса «Математика»

Ценностные ориентиры содержания курса связаны с целевыми и ценностными установками начального общего образования по математике, представленными в Примерной программе по учебным предметам начального общего образования.

В основе учебно-воспитательного процесса лежат такие ценности математики как:

— восприятие окружающего мира как единого и целостного при познании фактов, процессов, явлений, происходящих в природе и обществе, средствами математических отношений (хронология событий, протяженность во времени, образование целого из частей, изменением формы, размера, мер и т.д.);

— математические представления о числах, величинах, геометрических фигурах являются условием целостного восприятия природы и творений человека (объекты природы, сокровища

культуры и искусства и т.д.);

— владение математическим языком, алгоритмами, элементами математической логики позволяют ученику в его коммуникативной деятельности (аргументировать свою точку зрения, строить логическую цепочку рассуждений, выдвигать гипотезы, опровергать или подтверждать истинность предположения).

Реализация указанных ценностных ориентиров в курсе «Математики» в единстве процессов обучения и воспитания, познавательного и личностного развития обучающихся на основе форми-рования общих учебных умений, обобщенных способов действия обеспечит высокую эффективность решения жизненных задач и возможность саморазвития обучающихся.

Личностные, метапредметные, предметные результаты учебной программы

На первой ступени школьного обучения в ходе освоения мате-матического содержания обеспечиваются условия для достижения обучающимися личностных, метапредметных и предметных результатов.

Личностными результатами обучающихся являются:

готовность ученика использовать знания в учении и повседневной жизни для изучения и исследования математической сущности явлений, событий, фактов, способность характеризовать соб-ственные знания по предмету, формулировать вопросы, выдви гать гипотезы, устанавливать, какие из предложенных математи-ческих задач им могут быть решены; познавательный интерес к дальнейшему изучению математики.

Метапредметными результатами обучающихся являются:

способность анализировать учебную ситуацию с точки зрения математических отношений и характеристик, устанавливать ко-личественные, пространственные и временные отношения объектов окружающего мира, строить алгоритм поиска необходимой информации в учебниках, справочниках, словарях; определять логику решения практической и учебной задач; умение моделировать — решать учебные задачи с помощью знаков (символов), планировать, корректировать, контролировать решения учебных задач.

Личностные, метапредметные, предметные результаты учебной программы

Результаты изучения курса «Математика»

На первой ступени школьного обучения в ходе освоения математического содержания обеспечиваются условия для достижения обучающимися следующих личностных, метапредметных и предметных результатов.

Личностными результатами обучающихся являются: готовность ученика целенаправленно использовать знания в учении и в повседневной жизни для исследования математической сущности предмета (явления, события, факт); способность характеризовать собственные знания по предмету, формировать вопросы, устанавливать, какие из предложенных математических задач могут быть им успешно решены; познавательный интерес к математической науке.

Метапредметными результатами обучающихся являются: способность анализировать учебную ситуацию с точки зрения математических характеристик, устанавливать количественные и пространственные отношения объектов окружающего мира, строить алгоритм поиска необходимой информации, определять логику решения практической и учебной задач; умение моделировать- решать учебные задачи с помощью знаков (символов), планировать, контролировать и корректировать ход решения учебной задачи.

Предметными результатами обучающихся являются: освоенные знания о числах и величинах, арифметических действиях, текстовых задачах, геометрических фигурах; умения выбирать и использовать входе решения изученные алгоритмы, свойства арифметических действий, способы нахождения величин, приемы решения задач; умения использовать знаково-символические средства, в том числе модели и схемы, таблицы, диаграммы для решения математических задач.

Планируемые результаты освоения учебной программы по предмету «Математика» к концу 3-го года обучения

Обучающиеся научатся:

•читать и записывать все числа в пределах первых двух классов;

• представлять изученные числа в виде суммы разрядных слагаемых; использовать «круглые» числа в роли разрядных слагаемых;

• сравнивать изученные числа на основе их десятичной записи и записывать результат сравнения с помощью знаков (>, <, =);

• производить вычисления «столбиком» при сложении и вычитании многозначных чисел;

•применять сочетательное свойство умножения;

•выполнять группировку множителей;

• применять правила умножения числа на сумму и суммы на число;

•применять правило деления суммы на число;

• воспроизводить правила умножения и деления с нулем и единицей;

•находить значения числовых выражений со скобками и без скобок в 2–4 действия;

• воспроизводить и применять правила нахождения неизвестного множителя, неизвестного делителя, неизвестного делимого;

• выполнять сложение и вычитание многозначных чисел «столбиком»;

• выполнять устно умножение двузначного числа на однозначное;

•выполнять устно деление двузначного числа на однозначное и двузначного на двузначное;

•использовать калькулятор для проведения и проверки правильности вычислений;

•применять изученные ранее свойства арифметических действий для выполнения и упрощения вычислений;

•распознавать правило, по которому может быть составлена данная числовая последовательность;

• распознавать виды треугольников по величине углов (прямоугольный, тупоугольный, остроугольный) и по длине сторон (равнобедренный, равносторонний как частный случай равнобедренного, разносторонний);

•строить прямоугольник с заданной длиной сторон;

•строить прямоугольник заданного периметра;

•строить окружность заданного радиуса;

• чертить с помощью циркуля окружности и проводить в них с помощью линейки радиусы и диаметры; использовать соотншение между радиусом и диаметром одной окружности для решения задач;

•определять площадь прямоугольника измерением (с помощью палетки) и вычислением (с проведением предварительных линейных измерений); использовать формулу площади прямоугольника (S = a · b);

•применять единицы длины — километр и миллиметр и соотношения между ними и метром;

• применять единицы площади — квадратный сантиметр (кв. см или см2), квадратный дециметр (кв. дм или дм2), квадратный метр (кв. м или м2), квадратный километр (кв. км или км2) и соотношения между ними;

•выражать площадь фигуры, используя разные единицы площади (например, 1 дм 26 см2 и 106 см2);

•изображать куб на плоскости; строить его модель на основе развертки;

•составлять и использовать краткую запись задачи в табличной форме;

•решать простые задачи на умножение и деление;

• использовать столбчатую (или полосчатую) диаграмму для представления данных и решения задач на кратное или разностное сравнение;

•решать и записывать решение составных задач по действиям и одним выражением;

• осуществлять поиск необходимых данных по справочной и учебной литературе.

Обучающиеся получат возможность научиться:

• использовать разрядную таблицу для задания чисел и выполнения действий сложения и вычитания;

•воспроизводить сочетательное свойство умножения;

•воспроизводить правила умножения числа на сумму и суммы на число;

•воспроизводить правило деления суммы на число;

•обосновывать невозможность деления на 0;

• формулировать правило, с помощью которого может быть составлена данная последовательность;

• понимать строение ряда целых неотрицательных чисел и его геометрическую интерпретацию;

•понимать количественный смысл арифметических действий (операций) и взаимосвязь между ними;

• выполнять измерение величины угла с помощью произвольной и стандартной единицы этой величины;

•сравнивать площади фигур с помощью разрез
Автор: Миронова наталья Олеговна

Похожие материалы
Тип Название материала Автор Опубликован
документ Календарно-тематическое планирование 3 класс по математике по программе ПНШ Предлагаемый начальный курс математики имеет цели: ·           Математическое развитие младшего школьника: использование матема Миронова наталья Олеговна 30 Мар 2015
Календарно-тематическое планирование по математике 3 класс ПНШ Евгения Владимировна Руденко 15 Авг 2016
документ календарно-тематическое планирование уроков математики в 3 классе по программе ПНШ Москвичева Ольга Ильинична 30 Мар 2015
разное календарно-тематическое планирование по математике 3 класс по УМК ПНШ Пашко Татьяна Александровна 19 Окт 2015
Календарно-тематическое планирование по русскому языку 3 класс ПНШ Евгения Владимировна Руденко 15 Авг 2016
документ Тематическое планирование уроков математики 3 класс по УМК ПНШ Родькина Людмила Кузьминична 30 Мар 2015
документ Тематическое планирование по математике ПНШ 3 класс Третьякова Татьяна Владимировна 4 Апр 2015
документ календарно-тематическое планирование по литературному чтению 3 класс ПНШ Кочекова Алия Мухаремовна 4 Апр 2015
документ Календарно-тематическое планирование по технологии 3 класс УМК ПНШ Салохович Татьяна Владимировна 20 Апр 2015
документ Календарно-тематическое планирование по математике 1 класс ПНШ Белимова Светлана Михайловна 31 Мар 2015
разное Календарно- тематическое планирование по математике 3 класс (Атамура) Тартанова Галина Анатольевна 30 Мар 2015
разное Календарно-тематическое планирование по математике. 3 класс. Фишкова Светлана Николаевна 31 Мар 2015
документ календарно-тематическое планирование по математике 3 класс по программе "Планета знаний" с УУД Ячменева Ирина Павловна 30 Мар 2015
разное Тематическое планирование в 3 классе по программе ПНШ Яковлева Лилия Валентиновна 14 Фев 2016
разное Календарно-тематическое планирование 3 класс по программе "Школа-2100" Ларина Тамара Васильевна 4 Апр 2015
разное Календарно-тематическое планирование 3 класс по программе "Школа-2100" Ларина Тамара Васильевна 31 Мар 2015
документ Пояснительная записка и календарно-тематическое планирование по математике для 3 класса УМК ПНШ Светлана Владимировна Мищенко 30 Янв 2016
документ Календарно-тематическое планирование по математике 3 класс Абдрахманова Наталья Илдаровна 3 Мая 2015
документ ПНШ. Поурочное планирование по математике 3 класс Ахатова Мавлия Мусаевна 30 Мар 2015
документ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ» 7 класс, 3 курс Аверин Николай Петрович 15 Дек 2015
документ Календарно-тематическое планирование по математике 3 класс Комарова Мария Николаевна 30 Мар 2015
документ Календарно-тематическое планирование по математике (3 класс) Мухина Мария Николаевна 30 Мар 2015
документ Календарно - тематическое планирование по математике. 3 класс. Захарова Анна Александровна 30 Мар 2015
документ Календарно-тематическое планирование по математике, 3 класс, Занков Топильская Ольга Валериевна 30 Мар 2015
документ Календарно-тематическое планирование по математике 3 класс Фаизова Альфия Фягимовна 30 Мар 2015
документ календарно тематическое планирование по математике 3 класс школа России Бережнова Марина Александровна 30 Мар 2015
разное Календарно тематическое планирование по математике 3 класс Сидоренко Галина Николаевна 30 Мар 2015
документ календарно - тематическое планирование по математике 3 класс Ерашова Валентина Николаевна 31 Мар 2015
документ Календарно-тематическое планирование по математике 3 класс Нестерова Наталья Николаевна 1 Апр 2015
документ Календарно - тематическое планирование по математике, 3 класс, Моро М.И Бунина Ульяна Александровна 6 Апр 2015
документ Календарно-тематическое планирование по математике, 3 класс Сибирева Вера Сергеевна 31 Мар 2015
документ Календарно-тематическое планирование по математике 3 класс УМК Перспектива Бодю Людмила Емельяновна 7 Апр 2015
документ Календарно-тематическое планирование по математике 3 класс Капустина Ирина Борисовна 5 Ноя 2015
документ Календарно-тематическое планирование по математике 3 класс Грибинюк Марина Владимировна 5 Мая 2015
документ Календарно-тематическое планирование по математике. 3 класс Боронина Нина Леонидовна 7 Мая 2015
документ Календарно-тематическое планирование по математике, 3 класс Крылова Ольга Сергеевна 30 Апр 2015
документ Календарно-тематическое планирование по математике 3 класс Пушкова Валентина Васильевна 1 Июл 2015
документ Календарно-тематическое планирование по математике 3 класс Шишканова Снежана Егоровна 30 Июн 2015
документ календарно-тематическое планирование по математике 3 класс Седова Наталия Фёдоровна 21 Авг 2015
документ Календарно- тематическое планирование по математике 3 класс. Куталина Вера Борисовна 17 Сен 2015