Рабочая программа по математике, алгебре, геометрии для 6-7 классов общеобразовательной школы
Роль математики в формировании личности учащегося
Математика реализует не только мировоззренческие, но воспитательные, культурные и эстетические функции.
Мировоззренческая роль математики состоит, в частности, в том, что она помогает вникать в суть явлений и процессов, происходящих в окружающем нас мире, выявлять, описывать и исследовать как внешние связи, так и внутренние связи системы.
Эстетическая роль математики (эстетика – наука о прекрасном) состоит, в частности, в том, что она сводит разрозненные элементы и связи системы в целостную композицию, обладающую эстетическими качествами (красота, обаяние, цвет, форма, пропорция, симметрия, гармония, единство частей целого, полезность, удовольствие и др.).
Воспитательная роль математики состоит, в частности, в том, что изучение и применение математики вырабатывает исследовательский, творческий подход к делу; настойчивость, терпение и трудолюбие; аккуратность; логичность и строгость суждений; умение выделять главное и игнорировать второстепенное, не влияющее на суть проблемы; умение ставить новые задачи и др. Воспитательная функция математики подчинена функции общечеловеческого воспитания.
Культурная роль математики состоит, в частности, в том, что повышение общематематической культуры естественным образом, в соответствии с функциями математики, содействует повышению и профессиональной и общей культуры (мышления, поведения, выбора).
Основным общим моментом воспитательной функции математического образования - моментом, который в значительной степени обусловливает собою всё остальное, - служит приучение воспитываемых к полноценности аргументации.
Изучая математику, человек впервые в своей жизни встречает столь высокую требовательность к полноценности аргументации. Вначале она удивляет, отталкивает, пугает его, кажется ему излишней, сверхмерной, педантичной. Но постепенно, день за днем, он к ней привыкает.
Помимо специфических, особо строгих требований к логической правильности умозаключений, математика отличается от других преподаваемых в школе наук также и стилем своего мышления. Стиль этот, хотя и претерпевает на протяжении веков, и даже десятилетий, довольно значительные изменения, всё же имеет некоторые общие для всех эпох непреходящие черты, заметно отличающие его от стилей, принятых в других науках.
Математика – уникальная наука. Она способствует выработке адекватного представления и понимания знания. "Ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства” – писал Леонардо да Винчи.
МАТЕМАТИКИ 6 КЛАССА, АЛГЕБЫ И ГЕОМЕТРИИ 7 КЛАССА
В средней школе математика служит опорным предметом для изучения смежных дисциплин. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В ходе решения задач развиваются творческое и прикладное мышление.
Использование в математике нескольких математических языков дает возможность развивать у учащихся точную речь, умение выбирать наиболее подходящие языковые средства (символические, графические).
Цели обучения математике в средней школе:
• Интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности;
• Формирование представлений об идеях и методах математики, о математике как о форме описания и методе познания действительности;
• Формирование представлений о математике как о части общечеловеческой культуры.
Цель изучения математики в 5-6 классах
В этом возрасте необходимо развить понятие числа, выработать умения устно и письменно выполнять арифметические действия над числами, подготовить учащихся к изучению курсов алгебры и геометрии.
В ходе изучения математики 5-6 классов учащиеся развивают навыки вычислений с натуральными числами, учатся действиям с десятичными дробями, обыкновенными дробями, положительными и отрицательными числами, получают представление о буквенных выражениях, составлении и решении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур, измеряют геометрические величины.
Автор: Кравцова Инна Александровна