Рабочая программа по математике 6 класс Содержание математического образования в 6 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигу
При составлении рабочей программы были использованы:
Цели и задачи освоения дисциплины
Обучение математике в основной школе направлено на достижение следующих целей:
в направлении личностного развития
в метапредметном направлении
в предметном направлении
Применительно к курсу математики в 6-м классе цели состоят в систематическом развитии понятия числа; выработке умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики и подготовке учащихся к изучению систематических курсов алгебры и геометрии.
Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.
Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.
Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса. Согласно федеральному учебному плану для образовательных учреждений Российской Федерации на изучение математики в 6 классе отводится 210 часов из расчёта 6 часов в неделю из них 5 часов в обязательной части и 1 час из части формируемой учащимися образовательного процесса.
Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных, предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта основного общего образования.Личностные результаты:
Метапредметные результаты:
осуществлять контроль своей деятельности в процессе достижения
результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся
ситуацией;
аналогии, классифицировать, самостоятельно выбирать основания и
критерии для классификации;
Предметные результаты:
5. Содержание курса математики 6 класса.
Арифметика.
Натуральные числа.Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.
Координатный луч.
Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.
Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.
Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.
Простые и составные числа. Разложение чисел на простые множители.
Решение текстовых задач арифметическими способами.
Дроби.
Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.
Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.
Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.
Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.
Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.
Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.
Решение текстовых задач арифметическими способами.
Рациональные числа.
Положительные, отрицательные числа и число 0.
Противоположные числа. Модуль числа.
Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.
Координатная прямая. Координатная плоскость.
Величины. Зависимости между величинами.
Единицы длины, площади, объема, массы, времени, скорости.
Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.
Числовые и буквенные выражения. Уравнения.
Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.
Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.
Элементы статистики, вероятности. Комбинаторные задачи.
Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.
Среднее арифметическое. Среднее значение величины.
Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.
Геометрические фигуры. Измерения геометрических величин.Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.
Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.
Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.
Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры разверток многогранников, цилиндра, конуса. Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.
Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.
Осевая и центральная симметрии.
Математика в историческом развитии.Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.
Л.Ф. Магницкий. П.Л. Чебышев. А.Н. Колмогоров.
Автор: Абдулова Марина Владимировна