Рабочая программа по алгебре в 9 классе на 3 часа в неделю (всего 102 часа) авторы: Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова
Пояснительная записка
Рабочая программа составлена на основе Примерной программы основного общего образования по математике
1. (Закон Российской Федерации от 10.07.1992г. № 3266-1 «Об образовании».
2. Государственный стандарт общего образования (приказ Минобразования России №1089 от 5 марта 2004г.) и ФБУП (приказ МО РФ №1312 от 09.03.2004г.).
3. Письмо МО России от 23.09.2003г №03-93 ин/13-03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы».
4. Концепция профильного обучения на старшей ступени общего образования, утверждённая приказом Министерства образования РФ № 2783 от 18.07.2002г.
5. Примерные программы основного общего и среднего (полного) общего образования по математике (письмо Департамента государственной политики в образовании МОиН РФ от 07.06.2005 г. №03– 1263).
6. Приказ Министерства образования и науки Российской Федерации от 27.12. 2011 №2885 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2012/2013 учебный год».)
1.) Цель изучения:
§ овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
§ интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
§ формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
§ воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
§ развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.
Задачи курса:
-ввести понятия квадратного трехчлена, корня квадратного трехчлена, изучить формулу разложения квадратного трехчлена на множители;
- расширить сведения о свойствах функций, познакомить со свойствами и графиком квадратичной функции и степенной функции;
- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной ;
- научить решать квадратичные неравенства;
- завершается изучение систем уравнений с двумя переменными;
- вводится понятие неравенства с двумя переменными и системы неравенств с двумя переменными;
- вводится понятие последовательности, изучается арифметическая и геометрическая прогрессии;
- ввести элементы комбинаторики и теории вероятностей.
2).Общая характеристика учебного предмета, курса:
- краткая характеристика:
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В курсе алгебры 9 класса вырабатывается умение раскладывать квадратный трехчлен на множители; умение строить график функции у = ах2+ bх + с, умение указывать координаты вершины параболы, оси симметрии, направление ветвей; умение находить по графику промежутки возрастания и убывания функции, промежутки, в которых функция сохраняет знак; умение решать неравенства вида ах2+ bх + с>0 или ах2+ bх + с<0, где а0; умение решать целые и дробно рациональные уравнения с одной переменной; умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; вырабатывается умение использовать индексное обозначение, которое используется при изучении арифметической и геометрической прогрессии; умение использовать комбинаторное правила умножения, которое используется при выводе формул для подсчета числа перестановок, размещений и сочетаний, умение определять, о каком виде комбинаций идет речь в задаче.
- указание, на основании какой примерной (авторской) рабочей программы составлена:
Рабочая программа учебного курса составлена на основе Примерной программы основного общего образования по математике в соответствии с федеральным компонентом государственного стандарта и с учетом рекомендаций авторских программ Ю.Н.Макарычева.
Программа курса способствует логическому развитию и формирует умения пользоваться алгоритмами.
Отличительной особенностью программы является изложение в ней учебного материала с учётом уровня его усвоения.
-какие изменения в примерную (авторскую) рабочую программу внёс данный учитель
-
общий объём часов на изучение дисциплины, предусмотренный учебным планом:
Рабочая программа рссчитана на 3 часа алгебры в неделю (102 часа в год) и разработана для учебника Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б., «Алгебра. Учебник для 9 класса общеобразовательных учреждений».
3).Место учебного предмета, курса в учебном плане, среди других учебных дисциплин на определенной ступени образования:
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры в 9 классе отводится 3часа в неделю, всего 102 часа.
5).Результаты освоения курса (требования к уровню подготовки обучающихся):
-умения и навыки ученика:
Алгебра
уметь
§ составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
§ выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
§ применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
§ решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
§ решать линейные и квадратные неравенства с одной переменной и их системы;
§ решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
§ изображать числа точками на координатной прямой;
§ определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
§ распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
§ находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
§ определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
§ описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=), строить их графики;
§ использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
§ выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
§ моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
§ описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
§ интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики,
статистики и теории вероятностей
уметь
§ проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
§ извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
§ решать комбинаторные задачи путем систематического перебора возможных вариантов, вычислять средние значения результатов измерений;
§ находить частоту события, используя собственные наблюдения и готовые статистические данные;
§ использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
§ выстраивания аргументации при доказательстве (в форме монолога и диалога);
§ распознавания логически некорректных рассуждений;
§ записи математических утверждений, доказательств;
§ анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
§ решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
§ решения учебных и практических задач, требующих систематического перебора вариантов;
§ понимания статистических утверждений.
-межпредметные связи, раскрытые в ходе изучения курса: физика, химия, геометрия.
Автор: Тремаскина Валентина Сергеевна