членов команды?

27 сентября 2011 года

11 класс

Вариант 1 (без логарифмов)

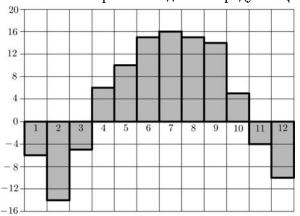
Район
Город (населенный пункт)
Школа
Класс
Фамилия
кмИ
Отчество

B 1	Теплох	од рассчит	ган на 750	0 пассая	кироі	в и 25 ч	ленов	в команд	ды. І	Каждая
	спасате	ельная шл	юпка мож	сет вмес	тить	60 чело	век.	Какое н	аиме	еньшее
	число	шлюпок	должно	быть	на	теплох	оде,	чтобы	В	случае
	необхо	лимости в	них можн	10 было	разм	естить	всех	пассажі	иров	и всех

Часть 1

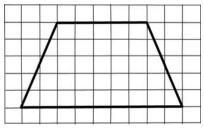
Ответ:

В2 На диаграмме показана среднемесячная температура воздуха в Нижнем Новгороде за каждый месяц 1994 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите разность между среднемесячными температурами июля и ноября. Ответ дайте в градусах Цельсия.



Ответ:

ВЗ Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.



3

В таблице указаны средние цены (в рублях) на некоторые основные продукты питания в трех городах России (по данным на начало 2010 гола).

Наименование продукта	Иркутск	Вологда	Тюмень
Пшеничный хлеб (батон)	12	16	13
Молоко (1 литр)	25	25	25
Картофель (1 кг)	16	9	16
Сыр (1 кг)	220	240	260
Мясо (говядина, 1 кг)	300	280	285
Подсолнечное масло (1 литр)	65	65	65

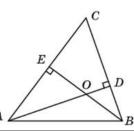
В каком из этих городов была самой низкой стоимость набора продуктов: 3 л молока, 1 кг говядины, 1 л подсолнечного масла? В ответе запишите эту стоимость (в рублях).

Ответ:

Найдите корень уравнения $\sqrt{79-3x}=8$.

Ответ:

В треугольнике ABC угол A равен 41°, угол Bравен 74° , высоты AD и BE пересекаются в точке О. Найдите угол АОВ. Ответ дайте в градусах.

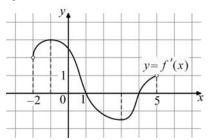


Ответ:

Найдите cosα, если sinα = $-\frac{3\sqrt{11}}{10}$ и α ∈ $\left(\pi; \frac{3\pi}{2}\right)$.

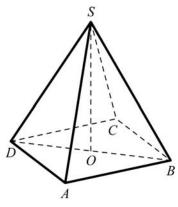
Ответ:

На рисунке изображён график y = f'(x) – производной функции f(x), опредёленной на интервале (-2; 5). По рисунку найдите точку минимума функции f(x).



Ответ:

В правильной четырёхугольной пирамиде $\mathbf{B9}$ SABCD точка O — центр основания, SO = 24, BD = 36. Найдите боковое ребро SA.



Ответ:

В среднем из 50 аккумуляторов, поступивших в B10 7 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.

Ответ:

B11

Найдите боковое ребро правильной четырёхугольной призмы, если сторона её основания равна 2, а площадь поверхности равна 104.

5

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-\frac{t}{T}}$, где m_0 (мг) — начальная масса изотопа, t (мин) — время, прошедшее от начального момента, T (мин) период полураспада. В начальный момент времени масса изотопа $m_0 = 192 \,\mathrm{Mr}$. Период его полураспада $T = 10 \,\mathrm{Muh}$. Через сколько минут масса изотопа будет равна 6 мг?

Ответ:

Из пункта А в пункт В, расстояние между которыми 30 км, **B13** одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 55 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 1 час 6 минут позже автомобилиста. Ответ дайте в км/ч.

Ответ:

Найдите наименьшее значение функции $y = x^3 - 12x^2 + 36x + 11$ на отрезке [4,5; 13].

Ответ:

Часть 2

Пля записи решений и ответов на задания С1-С6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

- $\mathbf{C1}$ $6\cos^2 x - 7\cos x - 5 = 0.$ Решите Укажите уравнение корни, принадлежащие отрезку $[-\pi; 2\pi]$.
- В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 4, найдите расстояние от точки A до прямой B_1C_1 .
- Решите неравенство

$$\left(\frac{1}{x^2 - 7x + 12} + \frac{x - 4}{3 - x}\right)\sqrt{6x - x^2} \le 0.$$

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 14, а отношение катетов треугольника равно $\frac{'}{24}$.

C5Найдите все положительные значения а, при каждом из которых система уравнений

$$\begin{cases} (|x|-9)^2 + (y-5)^2 = 9, \\ (x+3)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

- **C6** Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512 и
 - а) пять;
 - б) четыре;
 - в) три

из них образуют геометрическую прогрессию?

27 сентября 2011 года

11 класс

Вариант 2 (без логарифмов)

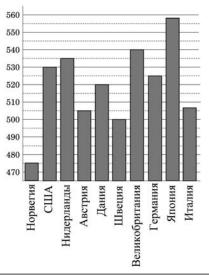
Район
Город (населенный пункт)
Школа
Класс
Фамилия
Имя
Отчество

Часть 1

В летнем лагере 228 детей и 28 воспитателей. В автобус помещается не более 47 пассажиров. Сколько автобусов требуется, чтобы перевезти всех детей и воспитателей из лагеря в город?

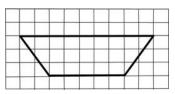
Ответ:

В2 На диаграмме показан средний балл участников 10 стран в тестировании учащихся 4-го класса по математике в 2007 году (по 1000-балльной шкале). Найдите число стран, в которых средний балл ниже, чем 515.



Ответ:

ВЗ Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.



В4 Телефонная компания предоставляет на выбор три тарифных плана.

Тарифный план	Абонентская плата	Плата за 1 минуту разговора			
"Повременный"	Нет	0,2 руб.			
"Комбинированный"	140 руб. за 320 мин. в месяц	0,15 руб. за 1 мин. сверх 320 мин. в месяц.			
"Безлимитный"	150 руб. в месяц				

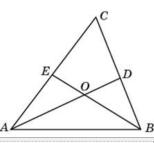
Абонент выбрал наиболее дешёвый тарифный план исходя из предположения, что общая длительность телефонных разговоров составляет 900 минут в месяц. Какую сумму он должен заплатить за месяц, если общая длительность разговоров в этом месяце действительно будет равна 900 минутам? Ответ дайте в рублях.

Ответ:

В5 Найдите корень уравнения $(x-1)^3 = 27$.

Ответ:

В треугольнике ABC угол C равен 74° , AD и BE — биссектрисы, пересекающиеся в точке O. Найдите угол AOB. Ответ дайте в градусах.

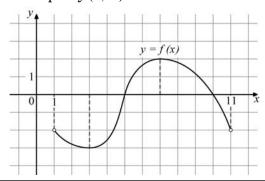


Ответ:

В7 Найдите $\cos \alpha$, если $\sin \alpha = \frac{2\sqrt{6}}{5}$ и $\alpha \in \left(\frac{\pi}{2}; \pi\right)$.

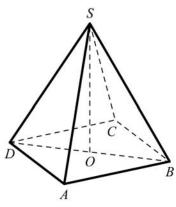
Ответ:

В8 На рисунке изображён график функции y = f(x), определённой на интервале (1; 11). По рисунку найдите корень уравнения f'(x) = 0, принадлежащий интервалу (2; 6).



Ответ:

В правильной четырёхугольной пирамиде SABCD точка O — центр основания, SO = 28, BD = 42. Найдите боковое ребро SC.



Ответ:

В среднем из 200 аккумуляторов, поступивших в продажу, 6 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.

В11 Найдите боковое ребро правильной четырёхугольной призмы, если сторона её основания равна 9, а площадь поверхности равна 522.

Ответ:

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-t} T$, где m_0 (мг) — начальная масса изотопа, t (мин) — время, прошедшее от начального момента, T (мин) — период полураспада. В начальный момент времени масса изотопа $m_0 = 124$ мг. Период его полураспада T = 2 мин. Через сколько минут масса изотопа будет равна 31 мг?

Ответ:

В13 Из пункта A в пункт B, расстояние между которыми 60 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 70 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 2 часа 20 минут позже автомобилиста. Ответ дайте в км/ч.

Ответ:

B14 Найдите наименьшее значение функции $y = x^3 + 6x^2 + 9x + 20$ на отрезке [-2; -0,5].

Ответ:

Часть 2

Для записи решений и ответов на задания C1–C6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

- ______ Решите уравнение $4\sin^2 x 12\sin x + 5 = 0$. Укажите корни, принадлежащие отрезку $[-\pi; 2\pi]$.
- С2 В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 10, найдите расстояние от точки E до прямой B_1C_1 .

С3 Решите систему неравенств

$$\begin{cases} \left(\frac{x+5}{4+x} - \frac{1}{x^2 + 9x + 20}\right) \sqrt{-7x - x^2} \ge 0, \\ x \cdot \sqrt{8} - 7x + 14\sqrt{8} > 57. \end{cases}$$

С4 Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 40, а отношение катетов треугольника равно $\frac{15}{8}$.

С5 Найдите все значения a, при каждом из которых наименьшее значение функции $f(x) = 2ax + \begin{vmatrix} x^2 - 8x + 7 \end{vmatrix}$ больше 1.

С6 Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1008 и

- а) пять;
- б) четыре;
- в) три

из них образуют геометрическую прогрессию?

Диагностическая работа №1 по МАТЕМАТИКЕ

27 сентября 2011 года

11 класс

Вариант 3 (без логарифмов)

йон	
род (населенный пункт)	
кола	
acc	
милия	
я	
чество	

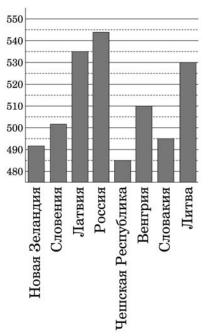
Математика. 11 класс. Вариант 3 (без логарифмов)

Часть 1

B 1	Ha	автозапр	оавке	кли	ент	куп	ил	28	литров	б	ензина	по	цене
		уб 50 коп 00 рублей		итр.	Скол	ько	рубл	іей	сдачи	ОН	должен	пол	учить

Ответ:

В2 На диаграмме показан средний балл участников 8 стран в тестировании учащихся 4-го класса по математике в 2007 году (по 1000-балльной шкале). Найдите число стран, в которых средний балл выше 500.



Ответ:

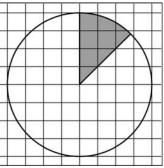
Ответ:

В ромбе ABCD угол ABC равен 126°. Найдите

Найдите cosα, если sinα = $-\frac{\sqrt{3}}{2}$ и α ∈ $\left(\pi; \frac{3\pi}{2}\right)$.

угол АСД. Ответ дайте в градусах.

На клетчатой бумаге нарисован круг, площадь которого равна 16. Найдите площадь заштрихованной фигуры.



Интернет-провайдер (компания, оказывающая подключению к сети Интернет) предлагает три тарифных плана.

Тарифный план	Абонентская плата	Плата за трафик
План "0"	Нет	0,8 руб. за 1 Мб
План "200"	201 руб. за 200 Мб трафика в месяц	0,7 руб. за 1 Мб сверх 200 Мб
План "500"	481 руб. за 500 Мб трафика в месяц	0,6 руб. за 1 Мб сверх 500 Мб

Пользователь предполагает, что его трафик составит 400 Мб в месяц, и исходя из этого выбирает наиболее дешевый тарифный план. Сколько рублей заплатит пользователь за месяц, если его трафик действительно будет равен 400 Мб?

Ответ:

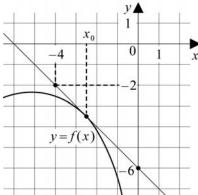
Найдите корень уравнения $(x+3)^3 = -8$.

Ответ:

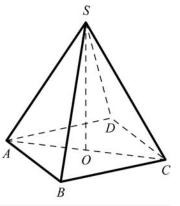
И	по	

3

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .



В9 В правильной четырёхугольной пирамиде SABCD точка O — центр основания, SO = 24, AC = 20. Найдите боковое ребро SD.

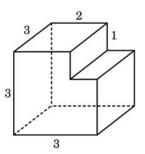


Ответ:

В среднем из 50 аккумуляторов, поступивших в продажу, 5 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.

Ответ:

В11 Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).



Ответ:

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-t} T$, где m_0 (мг) — начальная масса изотопа, t (мин) — время, прошедшее от начального момента, T (мин) — период полураспада. В начальный момент времени масса изотопа $m_0 = 100$ мг. Период его полураспада T = 4 мин. Через сколько минут масса изотопа будет равна 25 мг?

Ответ:

В13 Из пункта A в пункт B, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 90 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 4 часа 30 минут позже автомобилиста. Ответ дайте в км/ч.

Ответ:

B14 Найдите наибольшее значение функции $y = (x-2)^2(x-4) + 2$ на отрезке [1; 3].

Ответ:

Часть 2

Для записи решений и ответов на задания C1–C6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

- С1 Решите уравнение $6\cos^2 x 7\cos x 5 = 0$. Укажите корни, принадлежащие отрезку $[-\pi; 2\pi]$.
- С2 В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 4, найдите расстояние от точки A до прямой B_1C_1 .
- С3 Решите неравенство

$$\left(\frac{1}{x^2 - 7x + 12} + \frac{x - 4}{3 - x}\right)\sqrt{6x - x^2} \le 0.$$

- С4 Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 14, а отношение катетов треугольника равно $\frac{7}{24}$.
- **С5** Найдите все положительные значения *a*, при каждом из которых система уравнений

$$\begin{cases} (|x|-9)^2 + (y-5)^2 = 9, \\ (x+3)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

- Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512 и
 - а) пять;
 - б) четыре;
 - в) три

из них образуют геометрическую прогрессию?

11 класс

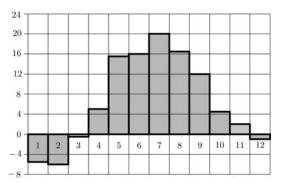
Вариант 4 (без логарифмов)

Часть 1

В1 На автозаправке клиент отдал кассиру 1000 рублей и попросил залить полный бак бензина. Цена бензина 28 руб 40 коп за литр. Сдачи клиент получил 34 руб 40 коп. Сколько литров бензина было залито в бак?

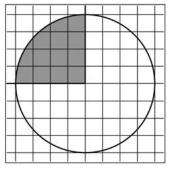
Ответ:

В2 На диаграмме показана среднемесячная температура воздуха в Минске за каждый месяц 2003 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. На сколько градусов средняя температура в сентябре была ниже, чем в июне. Ответ дайте в градусах Цельсия.



\sim	
()TRAT'	
OIBCI.	
	i

ВЗ На клетчатой бумаге нарисован круг, площадь которого равна 8. Найдите площадь заштрихованной фигуры.



Ответ:	
O I DO I I	

3

В4 Для транспортировки 4 тонн груза на 350 км можно воспользоваться услугами одной из трёх фирм-перевозчиков. Стоимость перевозки и грузоподъёмность автомобилей для каждого перевозчика указана в таблице. Сколько рублей придётся заплатить за самую дешёвую перевозку?

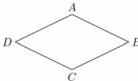
Перевозчик	Стоимость перевозки одним автомобилем (руб. на 10 км)	Грузоподъёмность автомобилей (тонн)
A	110	2,2
Б	120	2,4
В	160	3,2

Ответ:

В5 Найдите корень уравнения $\sqrt{23 - 2x} = 3$.

Ответ:

B6 В ромбе ABCD угол ABC равен 52°. Найдите угол ACD. Ответ дайте в градусах.

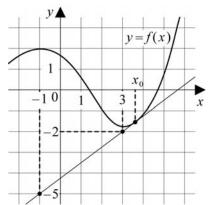


Ответ:

В7 Найдите $tg\alpha$, $ecnu \cos\alpha = \frac{1}{\sqrt{10}}$ и $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right)$

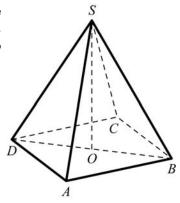
Ответ:

8 На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .



Ответ:

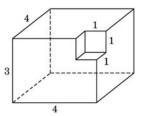
В правильной четырёхугольной пирамиде SABCD точка O — центр основания, SO = 15, BD = 16. Найдите боковое ребро SD.



Ответ:

В среднем из 150 аккумуляторов, поступивших в продажу, 9 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.

В11 Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).



Ответ:

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-\frac{t}{T}}$, где m_0 (мг) — начальная масса изотопа, t (мин) — время, прошедшее от начального момента, T (мин) — период полураспада. В начальный момент времени масса изотопа $m_0 = 56$ мг. Период его полураспада T = 7 мин. Через сколько минут масса изотопа будет равна 7 мг?

Ответ:

В13 Из пункта A в пункт B, расстояние между которыми 30 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 1 час позже автомобилиста. Ответ дайте в км/ч.

Ответ:

Найдите наименьшее значение функции $y = (x-1)(x-3)^2 - 3$ на отрезке [2; 4].

Ответ:

Часть 2

Для записи решений и ответов на задания C1–C6 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

С2 В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 10, найдите расстояние от точки E до прямой B_1C_1 .

С3 Решите систему неравенств

$$\begin{cases} \left(\frac{x+5}{4+x} - \frac{1}{x^2 + 9x + 20}\right) \sqrt{-7x - x^2} \ge 0, \\ x \cdot \sqrt{8} - 7x + 14\sqrt{8} > 57. \end{cases}$$

С4 Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 40, а отношение катетов треугольника равно $\frac{15}{8}$.

С5 Найдите все значения a, при каждом из которых наименьшее значение функции $f(x) = 2ax + \begin{vmatrix} x^2 - 8x + 7 \end{vmatrix}$ больше 1.

С6 Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1008 и

- а) пять;
- б) четыре;
- в) три

из них образуют геометрическую прогрессию?

Вар	B1	B2	В3	В4	В5	В6	В7	В8	В9	B10	B11	B12	B13	B14
1	13	20	35	420	5	115	-0,1	4	30	0,86	12	50	20	11
2	6	4	21	150	4	127	-0,2	3	35	0,97	10	4	20	16
3	202	5	2	320	-5	27	-0,5	-1	26	0,9	52	8	10	2
4	34	4	2	7700	7	64	-3	0,75	17	0,94	80	21	20	-3
5	13	20	35	420	5	115	-0,1	6	30	0,25	12	50	20	11
6	6	4	21	150	-2	127	-0,2	6	35	0,2	10	4	20	3,5
7	202	5	2	320	-46	27	-0,5	9	26	0,25	52	8	10	10
8	34	4	2	7700	-19	64	-3	8	17	0,2	80	21	20	4
9	6	8	35	456	4	129	0,75	2	26	0,25	49	7	10	23
10	826	3	3	367	-6	98	0,2	1	12	0,125	36	4	10	11
11	62	8	4,5	347	1	70	0,5	10	15	0,2	144	10000	15	17
12	0,4	465	49	292	-2	47	0,2	-1	24	0,3	16	700	20	112
13	13	20	35	420	5	115	-0,1	6	30	0,25	12	50	20	11
14	6	4	21	150	-2	127	-0,2	6	35	0,2	10	4	20	3,5
15	202	5	2	320	-46	27	-0,5	9	26	0,25	52	8	10	10
16	34	4	2	7700	-19	64	-3	8	17	0,2	80	21	20	4

Критерии оценивания заданий с развёрнутым ответом

С1 Решите уравнение $6\cos^2 x - 7\cos x - 5 = 0$. Укажите корни, принадлежащие отрезку $[-\pi; 2\pi]$.

Решение.

Сделаем замену $\cos x = y$ и получим квадратное уравнение $6y^2 - 7y - 5 = 0$, корнями которого являются числа $-\frac{1}{2}$ и $\frac{5}{3}$.

Уравнение $\cos x = \frac{5}{3}$ не имеет решений, а из уравнения $\cos x = -\frac{1}{2}$ находим:

$$x = \frac{2\pi}{3} + 2\pi k$$
 или $x = -\frac{2\pi}{3} + 2\pi k, \ k \in \mathbb{Z}.$

Корни уравнения: $-\frac{2\pi}{3}+2\pi n,\ \frac{2\pi}{3}+2\pi k,\ \text{где }n\in\mathbb{Z},\ k\in\mathbb{Z}.$

Найдем корни, принадлежащие отрезку $[-\pi; 2\pi]$.

$$-\pi \le -\frac{2\pi}{3} + 2\pi n \le 2\pi; \quad -\frac{1}{6} \le n \le \frac{8}{6} : n = 0, \ x = -\frac{2\pi}{3}; \ n = 1, \ x = \frac{4\pi}{3}.$$
$$-\pi \le \frac{2\pi}{3} + 2\pi k \le 2\pi; \quad -\frac{5}{6} \le k \le \frac{2}{3} : k = 0, \ x = \frac{2\pi}{3}.$$

Отрезку $[-\pi; 2\pi]$ принадлежат только корни $-\frac{2\pi}{3}, \frac{2\pi}{3}$ и $\frac{4\pi}{3}$.

Ответ: $\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$, $-\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$. Отрезку принадлежат корни $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$ и $\frac{4\pi}{3}$.

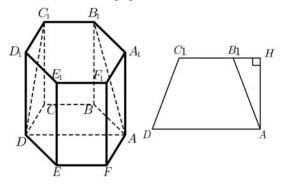
Содержание критерия		
Уравнение решено верно, указаны все корни, принадлежащие отрезку	2	
Уравнение решено верно, однако корни, принадлежащие отрезку, не указаны или указаны неверно	1	
Решение не соответствует ни одному из критериев, перечисленных выше.		
Максимальный балл	2	

С2 В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 4, найдите расстояние от точки A до прямой B_1C_1 .

Решение.

1

Так как ABCDEF — правильный шестиугольник, то прямые AD и BC параллельны, параллельны также прямые BC и B_1C_1 , следовательно, прямые AD и B_1C_1 параллельны. Расстояние от точки A до прямой B_1C_1 равно расстоянию между прямыми AD и B_1C_1 .



В трапеции DC_1B_1A $B_1C_1 = 4$, DA = 8, $DC_1 = B_1A = 4\sqrt{2}$.

$$B_1H = \frac{DA - C_1B_1}{2} = \frac{8-4}{2} = 2$$
, тогда $AH = 2\sqrt{7}$.

Ответ: $2\sqrt{7}$.

Содержание критерия		
Обоснованно получен верный ответ	2	
Решение содержит обоснованный переход к планиметрической задаче, но получен неверный ответ или решение не закончено	1	
Решение не соответствует ни одному из критериев, перечисленных выше	0	
Максимальный балл	2	

Решите неравенство

$$\left(\frac{1}{x^2 - 7x + 12} + \frac{x - 4}{3 - x}\right)\sqrt{6x - x^2} \le 0.$$

Решение.

<u>1 случай</u>. $6x - x^2 = 0$, тогда x = 0 или x = 6. При этих значениях x выражение $\frac{1}{x^2-7x+12}+\frac{x-4}{3-x}$ имеет смысл, поэтому числа 0 и 6 являются решениями неравенства.

2 случай. $6x - x^2 > 0$. При 0 < x < 6 $\sqrt{6x - x^2} > 0$. тогла

$$\frac{1}{x^2 - 7x + 12} + \frac{x - 4}{3 - x} \le 0; \ \frac{1}{(x - 4)(x - 3)} + \frac{x - 4}{3 - x} \le 0;$$

$$\frac{1 - (x - 4)^2}{(x - 4)(x - 3)} \le 0; \quad \frac{(5 - x)(x - 3)}{(x - 4)(x - 3)} \le 0.$$

С помощью метода интервалов получаем: x < 3, 3 < x < 4 или $x \ge 5$. Учитывая условие 0 < x < 6, находим: 0 < x < 3, 3 < x < 4 или $5 \le x < 6$.

Добавляя точки x = 0 и x = 6, находим все решения данного неравенства: [0; 3), (3; 4), [5; 6].

Ответ: [0; 3), (3; 4), [5; 6].

Содержание критерия	Баллы
Обоснованно получен правильный ответ	3
Обоснованно получен ответ, отличающийся от верного только конечным числом точек (не включены в ответ 0 или 6)	2
Полученный ответ неверен, решено верно только дробнорациональное неравенство без учёта области допустимых значений переменной неравенства	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 14, а отношение катетов треугольника равно $\frac{1}{24}$.

Решение.

Обозначим треугольник АВС. Предположим, что отрезок отсекает от треугольника АВС треугольник (см. рис. 1).

Обозначим точки касания окружности и прямых Р, О, R, S (см. рис. 1). Так как *ООМR* и *ОРСS* – квадраты, MQ = PC = r, где r – радиус окружности. Кроме того, NO = NP. Значит, NM = NC.

BN – биссектриса угла ABC. Треугольники NMB и NCBравны по гипотенузе и катету.

Пусть CB = 7x, а CA = 24x. По теореме Пифагора AB = 25x.

Тогда AM = AB - BM = 25x - 7x = 18x. Из подобия

треугольников *AMN* и *ACB* получаем: $\frac{CB}{NM} = \frac{CA}{4M}$, откуда $\frac{7x}{14} = \frac{24x}{18x}$. Следовательно, $x = \frac{8}{3}$. Найдём радиус окружности:

$$r = \frac{AC + BC - AB}{2} = \frac{6x}{2} = 3x = 8.$$

Если отрезок отсекает треугольник BMN (рис. 2), то, рассуждая аналогично, находим, что BM = 25x - 24x = x.

Из подобия треугольников следует *ACB* и *NMB* следует $\frac{CA}{NM} = \frac{CB}{BM}$, откуда получаем $\frac{24x}{14} = \frac{7x}{x}$, $x = \frac{49}{12}$.

Тогда $r = 3x = \frac{49}{4} = 12, 25.$

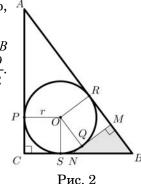


Рис. 1

Ответ: 8 или 12,25.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Рассмотрена хотя бы одна возможная геометрическая конфигурация, для которой получено правильное значение искомой величины	2
Рассмотрена хотя бы одна возможная геометрическая конфигурация, для которой получено значение искомой величины, неправильное изза арифметической ошибки	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

С5 Найдите все положительные значения a, при каждом из которых система уравнений

$$\begin{cases} (|x|-9)^2 + (y-5)^2 = 9, \\ (x+3)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

Решение.

Первое уравнение задаёт на плоскости окружности ω_1 и ω_2 радиуса 3, симметричные относительно оси ординат. Центры этих окружностей — точки C_1 (9; 5) и C_2 (-9; 5). Второе уравнение — уравнение окружности ω радиуса a>0 с центром C (-3; 0).

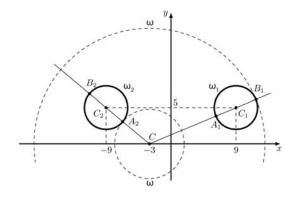
Система имеет единственное решение тогда и только тогда, когда окружность ω касается одной из окружностей ω_1 и ω_2 , но не имеет общих точек с другой окружностью.

Из точки C проведём лучи CC_1 и CC_2 и обозначим A_1 , B_1 и A_2 , B_2 точки их пересечения с окружностями ω_1 и ω_2 (см. рис.).

Заметим, что $CC_2 < CC_1$, поэтому $CA_2 < CA_1$ и $CB_2 < CB_1$. Значит, если $a = CA_2$, то ω касается ω_2 , но не имеет общих точек с ω_1 . Если $a = CB_1$, то ω касается ω_1 , но не имеет общих точек с ω_2 .

$$CA_2 = CC_2 - C_2A_2 = \sqrt{(9-3)^2 + 5^2} - 3 = \sqrt{61} - 3;$$

$$CB_1 = CC_1 + C_1B_1 = \sqrt{(9+3)^2 + 5^2} + 3 = 13 + 3 = 16.$$



Сравним CA_1 и CB_2 :

$$CA_1 = \sqrt{(9+3)^2 + 5^2} - 3 = 10, CB_2 = \sqrt{(9-3)^2 + 5^2} + 3 = \sqrt{61} + 3.$$

Получаем $CA_1 < CB_2$. Значит, если ω касается ω_1 в точке A_1 , то ω пересекает ω_2 в двух точках. Аналогично, если ω касается ω_2 в точке B_2 , то ω пересекает ω_1 в двух точках.

Следовательно, других решений, кроме двух найденных, система не имеет.

Ответ: $\sqrt{61} - 3$ или 16.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
$\overline{\mathrm{C}}$ помощью верного рассуждения получены оба верных значения параметра, но	
- или в ответ включены также и одно-два неверных значения (не учтено условие $a>0$);	3
или решение недостаточно обосновано	
С помощью верного рассуждения получено хотя бы одно верное значение параметра	2
Задача сведена к исследованию:	
– или взаимного расположения трёх окружностей;	1
– или двух квадратных уравнений с параметром	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

7

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512 и

- а) пять:
- б) четыре;
- в) три

из них образуют геометрическую прогрессию?

Решение.

Пусть n – количество последовательных членов геометрической прогрессии, произведение которых делит 1512.

 $1512 = 2^{3}3^{3}7^{1}$. Следовательно, члены геометрической прогрессии состоят только из простых множителей 2, 3 и 7.

Пусть первый член равен $2^a \cdot 3^b \cdot 7^c$, а знаменатель прогрессии равен $2^d \cdot 3^e \cdot 7^f$ (a, b, c, d, e, f – целые неотрицательные числа, при этом хотя бы одно из чисел d, e, f больше нуля). Тогда произведение чисел равно

$$2^{na+d+2d+\dots+(n-1)d} \cdot 3^{nb+e+2e+\dots+(n-1)e} \cdot 7^{nc+f+2f+\dots+(n-1)f} =$$

$$= 2^{na+\frac{(n-1)n}{2}d} \cdot 3^{nb+\frac{(n-1)n}{2}e} \cdot 7^{nc+\frac{(n-1)n}{2}f}.$$

Полученное число является делителем числа $1512 = 2^3 \cdot 3^3 \cdot 7^1$. Следовательно,

$$na + \frac{(n-1)nd}{2} \le 3$$
, $nb + \frac{(n-1)ne}{2} \le 3$ $nc + \frac{(n-1)nf}{2} \le 1$. (1)

Если $n \ge 4$, то $na + \frac{(n-1)nd}{2} \ge 4a + 6d$.

Аналогично,

$$nb + \frac{(n-1)ne}{2} \ge 4b + 6e \text{ M } nc + \frac{(n-1)nf}{2} \ge 4c + 6f.$$

Неравенства

$$4a + 6d \le 3$$
, $4b + 6e \le 3$ и $4c + 6f \le 1$

неотрицательные решения только при d = e = f = 0, невозможно.

Следовательно, $n \leq 3$. Тем самым мы ответили на вопросы а) и б) – ни пять, ни четыре числа не могут образовывать геометрическую прогрессию и иметь при этом произведение, которое делит 1512.

Приведем пример пяти чисел, удовлетворяющих условию задачи при n=3. Положим a = b = c = e = f = 0, d = 1.

Получаем три члена геометрической прогрессии 1, 2, 4. Их произведение равно 8. $\frac{1512}{9} = 189 = 3.63$. Следовательно, в качестве четвертого и пятого можно взять, например, числа 3 и 63: $1512 = 1 \cdot 2 \cdot 4 \cdot 3 \cdot 63$.

Ответ: а) нет: б) нет: в) ла

στβεί: α/ πεί, θ/ πεί, β/ μα.	
Содержание критерия	Баллы
Верно выполнены: а), б), в)	4
Верно выполнены б) и один пункт из двух: а), в)	3
Верно выполнено б) или a) и в)	2
Верно выполнен один пункт из двух: а), в)	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Критерии оценивания заданий с развёрнутым ответом

С1 Решите уравнение $4\sin^2 x - 12\sin x + 5 = 0$. Укажите корни, принадлежащие отрезку $[-\pi; 2\pi]$.

Решение.

Сделаем замену $\sin x = y$ и получим квадратное уравнение $4y^2 - 12y + 5 = 0$, корнями которого являются числа $\frac{1}{2}$ и $\frac{5}{2}$.

Уравнение $\sin x = \frac{5}{2}$ не имеет решений, а из уравнения $\sin x = \frac{1}{2}$ находим: $x = \frac{\pi}{6} + 2\pi k$ или $x = \frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

Корни уравнения: $\frac{\pi}{6} + 2\pi n$, $\frac{5\pi}{6} + 2\pi k$, где $n \in \mathbb{Z}$, $k \in \mathbb{Z}$.

Найдем корни, принадлежащие отрезку $[-\pi; 2\pi]$.

$$-\pi \le \frac{\pi}{6} + 2\pi n \le 2\pi; \quad -\frac{7}{12} \le n \le \frac{11}{12} : \quad n = 0, \ x = \frac{\pi}{6}.$$
$$-\pi \le \frac{5\pi}{6} + 2\pi k \le 2\pi; \quad -\frac{11}{12} \le k \le \frac{7}{12} : \quad k = 0, \ x = \frac{5\pi}{6}.$$

Отрезку $[-\pi; 2\pi]$ принадлежат только корни $\frac{\pi}{6}$ и $\frac{5\pi}{6}$.

Ответ: $\frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}, \ \frac{5\pi}{6} + 2\pi k, \ k \in \mathbb{Z}.$ Отрезку $[-\pi; 2\pi]$ принадлежат корни: $\frac{\pi}{6}$ и $\frac{5\pi}{6}$.

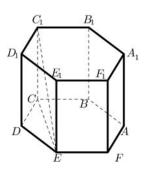
Содержание критерия	Баллы
Уравнение решено верно, указаны все корни, принадлежащие отрезку	2
Уравнение решено верно, однако корни, принадлежащие отрезку, не указаны или указаны неверно	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

С2 В правильной шестиугольной призме $ABCDEF A_1B_1C_1D_1E_1F_1$, все рёбра которой равны 10, найдите расстояние от точки E до прямой B_1C_1 .

Решение.

1

Так как ABCDEF — правильный шестиугольник, прямые BC и CE перпендикулярны. Поскольку прямые BC и B_1C_1 параллельны, CE перпендикулярно B_1C_1 . Тогда по теореме о трёх перпендикулярах EC_1 перпендикулярно B_1C_1 , так что длина отрезка EC_1 равна искомому расстоянию.



 $CE=10\sqrt{3};$ по условию $CC_1=10.$ По теореме Пифагора для треугольника $ECC_1:EC_1=20.$

Ответ: 20.

Содержание критерия		
Обоснованно получен верный ответ	2	
Решение содержит обоснованный переход к планиметрической задаче, но получен неверный ответ или решение не закончено	1	
Решение не соответствует ни одному из критериев, перечисленных выше	0	
Максимальный балл	2	

С3 Решите систему неравенств

$$\begin{cases} \left(\frac{x+5}{4+x} - \frac{1}{x^2 + 9x + 20}\right) \sqrt{-7x - x^2} \ge 0, \\ x \cdot \sqrt{8} - 7x + 14\sqrt{8} > 57. \end{cases}$$

Решение.

Решим первое неравенство.

 $\frac{\left(x+5\right)^{2}-1}{(x+5)(x+4)}\cdot\sqrt{-x(x+7)}\geq 0; \quad \frac{\left(x+6\right)\left(x+4\right)\sqrt{-x(x+7)}}{(x+4)(x+5)}\geq 0.$

1 случай: $-7x - x^2 = 0$, тогда x = 0 или x = -7. При выражение $\frac{(x+6)(x+4)}{(x+4)(x+5)}$ имеет смысл, поэтому числа 0 и -7 являются решениями неравенства.

$$2$$
 случай: $-7x-x^2>0$. Решаем неравенство $\frac{(x+6)(x+4)}{(x+4)(x+5)}\geq 0$.

Получим: $x \le -6$, -5 < x < -4 или x > -4.

Решением первого неравенства системы является:

$$-7 \le x \le -6$$
, $-5 < x < -4$ или $-4 < x \le 0$.

Решим второе неравенство системы:

$$x \cdot \sqrt{8} - 7x + 14\sqrt{8} > 57; (\sqrt{8} - 7)x + (14\sqrt{8} - 57) > 0.$$

Учитывая, что $\sqrt{8} - 7 < 0$, получаем:

$$x < \frac{57 - 14\sqrt{8}}{\sqrt{8} - 7} = \frac{8 - 14\sqrt{8} + 49}{\sqrt{8} - 7} = \frac{\left(\sqrt{8} - 7\right)^2}{\sqrt{8} - 7} = \sqrt{8} - 7.$$

Решением второго неравенства системы является: $x < \sqrt{8} - 7$. $-5 < \sqrt{8} - 7 < -4$, поэтому решением системы неравенств является: $-7 \le x \le -6$ или $-5 < x < \sqrt{8} - 7$.

Ответ: $[-7; -6], (-5; \sqrt{8} - 7).$

Содержание критерия	Баллы
Получен верный обоснованный ответ	3
Оба неравенства решены верно, но ответ к системе отсутствует или неверный	2
Верно решено только одно из неравенств исходной системы	
Решение не соответствует ни одному из критериев, перечисленных выше	
Максимальный балл	3

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 40, а отношение катетов треугольника равно $\frac{10}{9}$

Решение.

3

Обозначим треугольник АВС. Предположим, что отрезок отсекает от треугольника АВС треугольник (см. рис. 1).

Обозначим точки касания окружности и прямых Р, О, R, S (см. рис. 1). Так как ООМЯ и ОРСЯ — квадраты, MO = PC = r, где r — радиус окружности. Кроме того, pNO = NP. Значит, NM = NC. BN — биссектриса угла ABC. Треугольники *NMB* и *NCB* равны по гипотенузе и катету. Пусть CB = 8x, а CA = 15x. По теореме Пифагора AB = 17x. AM = AB - BM = 17x - 8x = 9x. Из треугольников AMN и ACB получаем: $\frac{CB}{NM} = \frac{CA}{4M}$, откуда $\frac{8x}{40} = \frac{15x}{9x}$.

Следовательно, $x = \frac{25}{3}$. Найдём радиус окружности:

$$r = \frac{AC + BC - AB}{2} = \frac{6x}{2} = 3x = 25.$$

Если отрезок отсекает треугольник BNM (рис. 2), то, Aрассуждая аналогично, находим, что BM = 17x - 15x = 2x. Из подобия треугольников *АСВ* и *NMB* получаем: $\frac{CA}{NM} = \frac{CB}{BM}$, откуда $\frac{15x}{40} = \frac{8x}{2x}$, $x = \frac{32}{3}$. Тогда r = 3x = 32.

Ответ: 25 или 32.

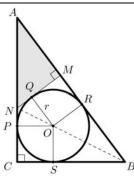
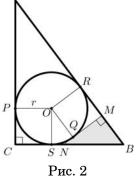


Рис. 1

откуда
$$\frac{8x}{40} = \frac{15x}{9x}.$$



Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Рассмотрена хотя бы одна возможная геометрическая конфигурация, для которой получено правильное значение искомой величины	2
Рассмотрена хотя бы одна возможная геометрическая конфигурация, для которой получено значение искомой величины, неправильное изза арифметической ошибки	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

3Н

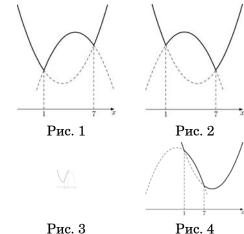
C5

Найдите все значения a, при каждом из которых наименьшее значение функции $f(x) = 2ax + \begin{vmatrix} x^2 - 8x + 7 \end{vmatrix}$ больше 1.

Решение.

- 1. Функция f имеет вид:
- а) при $x^2 8x + 7 \ge 0$: $f(x) = x^2 + 2(a-4)x + 7$, а ее график есть две части параболы с ветвями, направленными вверх, и осью симметрии x = 4 a;
- б) при $x^2 8x + 7 < 0$: $f(x) = -x^2 + (2a + 8)x 7$, а ее график есть часть параболы с ветвями, направленными вниз.

Все возможные виды графика функции f(x) показаны на рисунках:



- 2. Наименьшее значение функции f(x) может приниматься только в точках x=1 или x=7, а если $4-a \notin [1;7]$ то в точке x=4-a.
- 3. Наименьшее значение функции f больше 1 тогда и только тогда, когда

$$\begin{cases} f(1) > 1, \\ f(7) > 1, \\ f(4-a) > 1 \end{cases} \Leftrightarrow \begin{cases} 2a > 1, \\ 14a > 1, \\ 2a(4-a) + |a^2 - 9| > 1 \end{cases} \Leftrightarrow \begin{cases} a > \frac{1}{2}, \\ a > \frac{1}{14}, \\ 2a^2 - 8a + 1 - |a^2 - 9| < 0 \end{cases}$$

$$\Leftrightarrow \left\{ \begin{cases} a \ge 3, \\ a^2 - 8a + 10 < 0 \\ \begin{cases} \frac{1}{2} < a < 3, \\ 3a^2 - 8a - 8 < 0 \end{cases} \right. \Leftrightarrow \left\{ \begin{cases} a \ge 3, \\ 4 - \sqrt{6} < a < 4 + \sqrt{6} \\ \end{cases} \right. \Leftrightarrow \left\{ \frac{1}{2} < a < 3, \\ \frac{4 - \sqrt{40}}{3} < a < \frac{4 + \sqrt{40}}{3} \right. \right\}$$

$$\Leftrightarrow \left[\begin{array}{l} 3 \le a < 4 + \sqrt{6} \\ \frac{1}{2} < a < 3 \end{array} \right. \Leftrightarrow \frac{1}{2} < a < 4 + \sqrt{6}.$$

Ответ: $\left(\frac{1}{2}; 4 + \sqrt{6}\right)$

Содержание критерия	Баллы
Обоснованно получен правильный ответ	4
Получен верный ответ. Решение в целом верное, но либо имеет пробелы (например, не описаны необходимые свойства функции), либо содержит вычислительные ошибки	3
Верно рассмотрены все случаи раскрытия модулей. При составлении или решении условий на параметр допущены ошибки, в результате которых в ответе либо приобретены посторонние значения, либо часть верных значений потеряна	9
Хотя бы в одном из случаев раскрытия модуля составлено верное условие на параметр либо построен верный эскиз графика функции в целом	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1008 и

- а) пять;
- б) четыре;
- в) три

из них образуют геометрическую прогрессию?

Решение.

Пусть n – количество последовательных членов геометрической прогрессии, произведение которых делит 1008.

 $1008 = 2^4 3^2 7^1$. Следовательно, члены геометрической прогрессии состоят только из простых множителей 2, 3 и 7.

Пусть первый член равен $2^a \cdot 3^b \cdot 7^c$, а знаменатель прогрессии равен $2^d \cdot 3^e \cdot 7^f$ (a, b, c, d, e, f – целые неотрицательные числа, при этом хотя бы одно из чисел d, e, f больше нуля). Тогда произведение чисел равно

$$2^{na+d+2d+\dots+(n-1)d} \cdot 3^{nb+e+2e+\dots+(n-1)e} \cdot 7^{nc+f+2f+\dots+(n-1)f} =$$

$$= 2^{na+\frac{(n-1)n}{2}d} \cdot 3^{nb+\frac{(n-1)n}{2}e} \cdot 7^{nc+\frac{(n-1)n}{2}f}.$$

Полученное число является делителем числа $1008 = 2^4 \cdot 3^2 \cdot 7^1$. Следовательно,

$$na + \frac{(n-1)nd}{2} \le 4$$
, $nb + \frac{(n-1)ne}{2} \le 2$ u $nc + \frac{(n-1)nf}{2} \le 1$. (1)

Если $n \ge 4$, то $na + \frac{(n-1)nd}{2} \ge 4a + 6d$.

Аналогично,

$$nb + \frac{(n-1)ne}{2} \ge 4b + 6e \text{ in } nc + \frac{(n-1)nf}{2} \ge 4c + 6f.$$

Неравенства $4a + 6d \le 4$, $4b + 6e \le 2$ и $4c + 6f \le 1$ имеют целые неотрицательные решения только при d = e = f = 0, что невозможно.

Следовательно, $n \le 3$. Тем самым мы ответили на вопросы а) и б) – ни пять, ни четыре числа не могут образовывать геометрическую прогрессию и иметь при этом произведение, которое делит 1008.

Приведем пример пяти чисел, удовлетворяющих условию задачи при n=3. Положим $a=b=c=e=f=0,\ d=1$.

Получаем три члена геометрической прогрессии 1, 2, 4. Их произведение равно 8.

 $\frac{1008}{8} = 126 = 3 \cdot 42$. Следовательно, в качестве четвертого и пятого можно взять, например, числа 3 и 42: $1008 = 1 \cdot 2 \cdot 4 \cdot 3 \cdot 42$.

Ответ: а) нет; б) нет; в) да.

Содержание критерия	Баллы
Верно выполнены: а), б), в)	4
Верно выполнены б) и один пункт из двух: а), в)	3
Верно выполнено б) или а) и в)	2
Верно выполнен один пункт из двух: а), в)	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4