

Издательство «Легион»

«Экономические» задачи повышенного уровня сложности в ЕГЭ

докладчик:

Кулабухов Сергей Юрьевич

Спецификация КИМ ЕГЭ 2015 базового уровня по математике (фрагмент)

L									4
	19	Уметь использовать приобретённые знания и умения в практической деятельности и повседневной жизни	6.1, 6.3	1.1.1, 1.1.3, 2.1.12	П	3	_	30	
- 1								1	4

Кодификатор элементов содержания КИМ ЕГЭ 2015 базового уровня по математике (фрагмент)

1.1.1	Целые числа
1.1.3	Дроби, проценты, рациональные числа
2.1.12	Применение математических методов для решения
	содержательных задач из различных областей науки и
	практики. Интерпретация результата, учёт реальных
	ограничений

Кодификатор требований к уровню подготовки выпускников, КИМ ЕГЭ 2015 по математике (фрагмент)

	6.1	Анализировать реальные числовые данные, информацию		
		статистического характера; осуществлять практические расчеты		
		по формулам; пользоваться оценкой и прикидкой при		
		практических расчетах		
·				
	6.3	Решать прикладные задачи, в том числе социально-		
		экономического и физического характера, на наибольшие и		
		наименьшие значения, на нахождение скорости и ускорения		

Задача 1.

Максим хочет взять в кредит 1,5 млн рублей. Погашение кредита происходит раз в год равными суммами (кроме, может быть, последней) после начисления процентов. Ставка процента 10% годовых. На какое минимальное количество лет может Максим взять кредит, чтобы ежегодные выплаты были не более 350 тысяч рублей?

Решение

При начислении процентов оставшаяся сумма долга умножается на коэффициент $1+0.01\cdot 10=1.1$. В конце первого года долг составит $1500000\cdot 1.1=1650000$ рублей. После выплаты 350 тысяч рублей останется долг 1300000 рублей. И так далее. Составим таблицу выплат.

Год	Долг банку (руб.)	Остаток после транша (руб.)
0	1500000	
1	1650000	1300000
2	1430000	1080000
3	1188000	838000
4	921800	571800
5	628980	278980
6	306878	0

Значит, Максим погасит кредит за 6 лет.

Ответ: 6.

Содержание критерия	
Обоснованно получен правильный ответ	
Найден верный алгоритм вычисления оставшейся суммы долга, но допущена вычислительная ошибка, приведшая к неверному ответу	2
Найден верный алгоритм вычисления оставшейся суммы долга, но решение не доведено до конца или имеется верный ответ без обоснования	1
Решение не соответствует ни одному из критериев, перечисленных выше	

Задача 2.

31 декабря 2014 года Фёдор взял в банке 6951000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Фёдор переводит в банк платёж. Весь долг Фёдор выплатил за 3 равных платежа. На сколько рублей меньше он бы отдал банку, если бы смог выплатить долг за 2 равных платежа?

1. Пусть x рублей — ежегодная плата при которой Фёдор выплатит кредит за 3 года, $p=6\,951\,000$ рублей — сумма кредита. Составим таблицу выплат.

Год	Долг банку (руб.)	Остаток после ежегодной выплаты (руб.)
0	p	_
1	1,1p	1,1p-x
2	1,1(1,1p-x) = 1,21p-1,1x	1,21p-1,1x-x=1,21p-2,1x
3	1,1(1,21p-2,1x) = 1,331p-2,31x	1,331p - 2,31x - x = 1,331p - 3,31x

Таким образом, получаем уравнение 1,331p-3,31x=0.

Тогда
$$x=\frac{1,331p}{3,31}=\frac{1,331\cdot 6\,951\,000}{3,31}=2\,795\,100$$
 рублей.

2. Если через y обозначить ежегодную плату при которой весь кредит выплачивается за 2 года, то из приведённой таблицы видно, что y можно найти из уравнения $1{,}21p{-}2{,}1y=0$.

Тогда
$$y = \frac{1,21p}{2,1} = \frac{1,21 \cdot 6951000}{2,1} = 4005100$$
 рублей.

3. За три равных платежа банку будет уплачено 3x рублей, а за два равных платежа — 2y рублей. Таким образом, если бы Фёдор смог выплатить кредит за 2 равных платежа, то он сэкономил бы $3x-2y=3\cdot 2\,795\,100-2\cdot 4\,005\,100=375\,100$ рублей.

Ответ: 375 100.

Задача 3.

Двадцать пятого ноября 2013 года Иван взял в банке 2 млн. рублей в кредит. План выплаты кредита такой — 25-го ноября каждого следующего года банк начисляет проценты на оставшуюся сумму долга, то есть увеличивает долг на x%, а затем Иван переводит очередной транш. Иван выплатил кредит за 2 транша, переведя в первый раз 1 210 000 рублей, а во второй — 1 219 800 рублей. Под какой годовой процент банк выдал кредит Ивану?

После начисления процентов в конце первого года, сумма, которую должен выплатить Иван, возрастает до $2\,000\,000\cdot\left(1+\frac{x}{100}\right)$ рублей, из них Иван выплачивает $1\,210\,000$ рублей, уменьшая тем самым сумму долга до $\left(2\,000\,000\cdot\left(1+\frac{x}{100}\right)-1\,210\,000\right)$ рублей.

В конце второго года сумма долга снова возрастает на x% и, таким образом, становится равной $\left(1+\frac{x}{100}\right)\cdot\left(2\,000\,000\cdot\left(1+\frac{x}{100}\right)-1\,210\,000\right)$. Заплатив 1 219 800 рублей, Иван погашает кредит, то есть $\left(1+\frac{x}{100}\right)\cdot\left(2\,000\,000\cdot\left(1+\frac{x}{100}\right)-1\,210\,000\right)=1\,219\,800$. В этом уравнении сделаем замену $y=\left(1+\frac{x}{100}\right)\left(y>1\right)$ и разделим обе части на 200, получим $y\cdot\left(10\,000y-6\,050\right)=6\,099$, то есть $10\,000y^2-6\,050y-6\,099=0$, откуда $y_{1,2}=\frac{3\,025\pm\sqrt{3025^2+60\,990\,000}}{10\,000}=\frac{3\,025\pm\sqrt{70\,140\,625}}{10\,000}$.

$$\sqrt{70\ 140\ 625} = \sqrt{5^4 \cdot 25 \cdot 4\ 489} = \sqrt{5^6 \cdot 4\ 489} = 5^3 \cdot \sqrt{4\ 489} = 125 \cdot \sqrt{4\ 489}$$
.

Ясно, что $60^2 < 4$ $489 < 70^2$. Перебирая натуральные числа от 61 до 69, находим, что $\sqrt{4489} = 67$ и значит, $\sqrt{70}$ 140 $625 = 125 \cdot 67 = 8$ 375. Получим $y_{1,2} = \frac{3025 \pm 8375}{2}$.

Так как y > 1, получим $y_{1,2} = \frac{3025 + 8375}{10000} = 1,14$. Но тогда

 $1 + \frac{x}{100} = 1,\!14$, откуда x = 14.

Ответ: 14

Задача 4.

В банк помещён вклад 64 000 рублей под 25% годовых. В конце каждого из первых трёх лет (после начисления процентов) вкладчик дополнительно положил на счёт одну и ту же фиксированную сумму. К концу четвёртого года после начисления процентов оказалось, что он составляет 385 000 рублей. Какую сумму (в рублях) ежегодно добавлял вкладчик?

Пусть в конце каждого года вкладчик добавлял на счёт x рублей. Тогда к концу первого года на счету было $1.25 \cdot 64\,000 + x = 80\,000 + x$ рублей (учитываем, что $1,25=\frac{5}{4}$). K концу второго года на счету уже находилось $\frac{5}{4} \cdot (80\,000 + x) + x$, к концу третьего $-\frac{5}{4} \cdot \left(\frac{5}{4} \cdot (80\,000 + x) + x\right) + x$, концу четвёртого — $\frac{5}{4} \cdot \left(\frac{5}{4} \cdot \left(\frac{5}{4} \cdot (80\,000 + x) + x\right) + x\right)$. Таким образом, получим уравнение $\frac{5}{4} \cdot \left(\frac{5}{4} \cdot \left(\frac{5}{4} \cdot (80\,000 + x) + x\right) + x\right) = 385\,000$, откуда $\frac{5}{4} \cdot \left(\frac{5}{4} \cdot (80\,000 + x) + x\right) + x = 308\,000$ и $\frac{25}{16} \cdot (80\,000 + x) + \frac{5x}{4} + x = 308\,000$; $125\,000 + \frac{25x}{16} + \frac{5x}{4} + x = 308\,000; \frac{61x}{16} = 183\,000; x = 48\,000.$

Ответ: 48000.

Задача 5.

Производительность первого цеха завода не более 730 произведённых телевизоров в сутки.

Производительность второго цеха завода до реконструкции составляла 75% от производительности первого цеха. После реконструкции второй цех увеличил производительность на 20% и стал выпускать более 640 телевизоров в сутки.

Найдите, сколько телевизоров в сутки выпускает второй цех после реконструкции, если оба цеха выпускают в сутки целое число телевизоров.

Пусть первый цех в сутки выпускает x телевизоров, тогда до реконструкции второй цех выпускал 0.75x телевизоров, при этом $x \in N$ и $0.75x \in N$. Получим из этого, что $\frac{75x}{100} = \frac{3x}{4} \in N$, значит x кратно 4.

После реконструкции второй цех стал выпускать $0.75x \cdot 1.2 = 0.9x$ часов, при этом $0.9x = \frac{9x}{10} \in N$, значит x кратно 10.

Таким образом, x кратно 20.

По условию, $x \leqslant 730$ и 0.9x > 640 или x > 711.

Число, кратное 20 и $711 < x \le 730$, это число 720.

Второй цех после реконструкции стал выпускать $720\cdot 0,9=648$ телевизоров в сутки.

Ответ: 648.

Задача 6.

Заводы в США и России за февраль выпустили более 39 танков. Число танков, выпущенных в России, уменьшенное на 3, более чем в 4 раза превышает число танков, выпущенных в США. Утроенное число танков, выпущенных в России, превышает удвоенное число танков, выпущенных за февраль в США, но не более, чем на 85. Сколько танков выпустили за февраль на заводе в России?

Решение

Пусть за февраль на заводе в России выпустили x танков, а в США — y танков. По условию можно составить систему неравенств:

$$\begin{cases} x+y > 39, \\ x-3 > 4y, \\ 3x-2y \leqslant 85. \end{cases}$$

При этом x и y — натуральные числа. Выразим одну из переменных во всех трёх неравенствах.

$$\begin{cases} x > 39 - y, \\ x > 4y + 3, \\ x \leqslant \frac{85 + 2y}{3}. \end{cases}$$

Тогда получим
$$\left\{ \begin{array}{l} 39-y < x \leqslant \frac{85+2y}{3}, \\ 4y+3 < x \leqslant \frac{85+2y}{3}; \end{array} \right.$$

$$\begin{cases} 117 - 3y < 85 + 2y, \\ 12y + 9 < 85 + 2y; \\ 5y > 32, \\ 10y < 76; \end{cases}$$

 $\left\{ egin{array}{ll} y > 6,4, \\ y < 7,6; \end{array} \right. y = 7$ — единственное целое решение.

 $\dot{\Pi}$ одставим y=7 в начальную систему неравенств.

$$\begin{cases} x + 7 > 39, \\ x - 3 > 28, \\ 3x - 14 \le 85; \\ x > 32, \\ x > 31, \\ x \le 33. \end{cases}$$

Так как x целое, то x = 33.

В России на заводе за февраль выпустили **33** танка. *Ответ*: **33**.

Задача 7.

Для перевозки большого числа ящиков по 130 кг и по 110 кг выделены двухтонные машины. Можно ли загрузить такими ящиками машину полностью? Укажите все варианты того, сколько ящиков каждого вида при этом можно взять.

Обозначим через x число ящиков по 130 кг и через y — число ящиков по 110 кг. Тогда должно выполняться 130x+110y=2000, или 13x+11y=200, где x и y могут быть только целыми положительными числами.

 $x\geqslant 0$, поэтому $11y\leqslant 200,\,y\leqslant 18.$ $y\geqslant 0$, поэтому $13x\leqslant 200,\,x\leqslant 15.$ Далее у нас есть два пути.

- 1) Перебираем все значения x от 0 до 15 и находим целые значения y.
- 2) Решим уравнение 13x + 11y = 200 в целых числах. 11y = 200 13x,

Мы получили, что $\left\{ \begin{array}{ll} x=1-11k, \\ y=17+13k, \end{array} \right.$ $k\in Z.$

$$x \geqslant 0, 1 - 11k \geqslant 0, k \leqslant \frac{1}{11},$$

 $y\geqslant 0,\,17+13k\geqslant 0,\,k\geqslant -rac{17}{13},\,$ значит k может быть равно -1 или 0.

Если k = -1, то x = 12, y = 4.

Если k = 0, то x = 1, y = 17.

Omsem: 12 ящиков по 130 кг и 4 ящика по 110 кг или 1 ящик по 130 кг и 17 ящиков по 110 кг.

Задача 8.

Билл несколько лет назад вложил деньги в акции некоторого предприятия. Ежегодно он получал прибыль по акциям сначала $9\frac{1}{11}\%$ в год, потом 37,5% в год и наконец $6\frac{2}{3}\%$ в год и сразу же вкладывал деньги в те же акции. Известно, что одинаковые процентные ставки были равное число лет, а в конце первоначальная сумма его вклада увеличилась на 156%. Определите срок хранения вклада.

Увеличение вклада на $9\frac{1}{11}\%$ увеличивает его в $\left(100+9\frac{1}{11}\right)$: 100 раз, или в $\frac{1200}{1100}=\frac{12}{11}$ раза. Аналогично, увеличение на 37,5% увеличивает вклад в $\frac{550}{400}$ раза, увеличение на $6\frac{2}{3}\%$ — в $\frac{16}{15}$ раза. Если каждая

процентная ставка была k лет, то вклад увеличился в $\left(\frac{12}{11} \cdot \frac{55}{40} \cdot \frac{16}{15}\right)^k$ раз,

что по условию равно $\frac{100+156}{100}$ или $\frac{64}{25}$ раза.

$$\left(\frac{12}{11} \cdot \frac{55}{40} \cdot \frac{16}{15}\right)^k = \frac{64}{25}, \left(\frac{8}{5}\right)^k = \frac{64}{25}; k = 2.$$

Всего вклад хранился $3 \cdot 2 = 6$ лет.

Ответ: 6 лет.

Задача 9.

Цена производителя на товар A составляет 20 рублей. Прежде чем попасть на прилавок магазина, товар проходит через несколько фирмпосредников, каждая из которых увеличивает текущую цену в 2 или 3 раза и осуществляет услуги по транспортировке и хранению товара. Магазин делает наценку 20%, после чего покупатель приобрёл товар за 576 рублей. Сколько посредников было между магазином и производителем?

Решение

Определим цену, по которой магазин закупил товар A у посредника. Она равна 576:1,2=480 (рублей). Значит, за счёт посредников цена возросла в $\frac{480}{20}=24$ раза. Пусть k посредников увеличивали цену в 2 раза, m — в 3 раза. Тогда $24=2^k\cdot 3^m$, 2 и 3 — взаимно простые числа. Но $24=2^3\cdot 3^1$, поэтому k=3, m=1. Общее число посредников равняется k+m=3+1=4.

Ответ: 4.

Задача 10.

Первоначально годовой фонд заработной платы столовой составлял 1500 000 рублей. После увеличения числа клиентов, штатное расписание было увеличено на 9 человек, а фонд заработной платы возрос до 5 250 000 рублей, средняя годовая заработная плата (относительно всех сотрудников) стала больше на 100 000 рублей. Какова стала средняя заработная плата (относительно всех сотрудников) после увеличения годового фонда?

Пусть изначально в столовой работали n человек. Тогда средняя годовая заработная плата (в рублях) равнялась $\frac{1500\,000}{n}$. После увеличения числа клиентов штат сотрудников составил (n+9) человек, а средняя годовая заработная плата возросла до $\frac{5\,250\,000}{n+9}$ рублей. По условию $\frac{5\,250\,000}{n+9}-\frac{1\,500\,000}{n}=100\,000$. Определим n. Сократив обе части уравнения на $50\,000$, получим $\frac{105}{n+9}-\frac{30}{n}=2$; $\frac{105n-30(n+9)}{n(n+9)}=\frac{75n-270}{n(n+9)}$; 75n-270=2n(n+9); $2n^2+18n=75n-270$; $2n^2-57n+270=0$;

$$n_{1,2} = \frac{57 \pm \sqrt{3249 - 2160}}{4} = \frac{57 \pm 33}{4}; n_1 = 6; n_2 = 22,5.$$

Число сотрудников должно выражаться неотрицательным целым числом, поэтому n=6. Тогда n+9=15. Искомая средняя годовая заработная плата равна $\frac{5\,250\,000}{15}=3\,50\,000$ (рублей).

Ответ: 350 000 рублей.

Литература

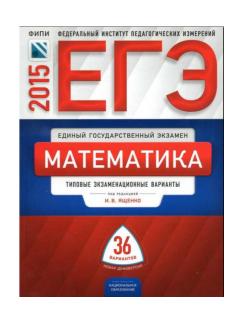
1. Математика. Подготовка к ЕГЭ 2015. Книга 2: учебно-методическое пособие/ под. ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. Ростов-на-Дону: Легион, 2014. – 256 с.



2. Задание с экономическим содержанием в ЕГЭ по математике.

Учебно-методическое пособие под. ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. Ростов-на-Дону: Легион, 2014. – 48 с.

3. ЕГЭ. Математика : типовые экзаменационные варианты : 36 вариантов / под ред. И. В. Ященко. — М. — «Национальное образование», 2015. — 272 с.



Спасибо за внимание!