Конспект занятия на тему «Приращение аргумента и функции. Определение производной. Алгоритм вычисления производной по определению. Таблица производных. Правила вычисления производной»

Цели:

- ввести понятия приращение аргумента и приращение функции;
- научить находить приращение аргумента и приращение функции;
- ввести понятие производной;
- способствовать выработке навыка нахождения производной по определению;
 - Учить находить производную по таблице;
 - Учить использовать правила дифференцирования;

Дидактический материал: опорный конспект, карточки-задания для индивидуальной работы, памятки, учебник Колмогорова А.Н. «Алгебра и начала анализа. 10-11классы», обучающий видеокурс «Математика 7-11», Математика — учебное электронное издание 5-11.Математический дневник .

План урока

- 1. Организационный момент.
- 2. Актуализация знаний:
 - 2.1. Фронтальный опрос;
 - 2.2. Работа с карточками.
- 3. Изучение нового материала:
 - 3.1. Приращение аргумента и приращение функции;
 - 3.2. Понятие «Производная»;
 - 3.3. Схема вычисления производной по определению;
 - 3.4. Таблица производных;
 - 3.5. Правила дифференцирования.
- 4. Закрепление изученного.
- 5. Подведение итогов.
- 6. Домашнее задание.
- 7. Рефлексия.

Ход урока

1. Организационный момент

- доброжелательный настрой учителя и учащихся;
- быстрое включение класса в деловой ритм;
- организация внимания всех учащихся;
- сообщение темы и целей урока.

2. Актуализация знаний

(выявление факта выполнения (не выполнения) домашнего задания у всего класса, устранение типичных ошибок; работа организована параллельно: учащимся на выбор предлагается письменно ответить на вопросы или участвовать в фронтальном опросе. Учащиеся, работающие письменно, садятся на первые парты. Двое учащихся вызывается к доске для написания домашней работы.)

2.1. Фронтальный опрос

- Что такое последовательность?
- Какие виды последовательностей вы знаете?
- Как задаётся числовая последовательность?
- Что мы называем пределом последовательности?
- Как найти предел последовательности, при $x \to \infty$?
- Как найти предел приx →к конкретному числу?

2.2. Индивидуальные задания для учащихся

Карточка 1

Дайте определение	Вычислите
понятию «Предел по-	a) $\lim_{x\to\infty}\frac{x+1}{x-2}$;
следовательности»	6) $\lim_{x \to \infty} \frac{3x - 4}{2x + 7}$;
	$x \to \infty 2x + 7$
Как найти предел по-	Если Вы не справились с заданием укажите причину
следовательности,	вызвавшую у Вас затруднение.
при $x \to \infty$	

Карточка 2

Дайте определение	Вычислите
понятию «Предел по-	B) $\lim_{x\to\infty}\frac{x-4}{x+3}$;
следовательности»	$\Gamma) \lim_{x \to \infty} \frac{7x + 9}{6x - 1}.$
Как найти предел,	Если Вы не справились с заданием укажите причину
при $x \to \infty$? При $x \to \kappa$	вызвавшую у Вас затруднение.
конкретному числу	

3. Изучение нового материала

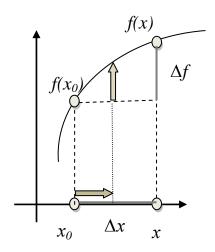
3.1. Приращение аргумента и приращение функции

Часто нас интересует не значение какой либо величины, а ее изменение. Например, сила упругости пружины пропорциональна удлинению пружины; работа есть изменение энергии; средняя скорость это отношение перемещения к промежутку времени, за который было совершено это перемещение, и т. д.

При сравнении значения функции f в некоторой фиксированной точке x_0 со значениями этой функции в различных точках x, лежащих в окрестности x_0 , удобно выражать разность $f(x) - f(x_0)$ через разность $(x-x_0)$, пользуясь понятиями «приращение аргумента» и «приращение функции». Объясним их смысл. (Просмотр видеокурса «Математика 7-11» - Определение производной (приращение аргумента и приращение функции)).

Графически это можно изобразить так:x, x_0 - это точки, f(x), $f(x_0)$ -значения функции в этих точек. Тогда Δf — это разность $(f(x) - f(x_0))$ - (отрезок Δf), а Δx - разность $(x-x_0)$ - отрезок Δx . На графике хорошо видно, что приращение функции Δf зависит от приращения аргумента Δx . Если мы уменьшим значение Δx , то

значение Δf тоже уменьшится.(в процессе обсуждения преподаватель чертит график на доске)



Составьте опорный конспект.

Для лучшего понимания давайте рассмотрим несколько примеров по данной формуле

№ 178 —Найдите приращение функции f в точке x_0

а) решает учитель с объяснением у доски

a)
$$f(x) = -\frac{2}{x}$$
, $x_0 = -2$, $\Delta x = 0.1$

 $Peшeнue: x = x_0 + \Delta x = -2 + 0.1 = -1.9$

$$\Delta f = f(x) - f(x_0) = \left(\frac{-2}{-1.9}\right) - \left(\frac{-2}{-2}\right) = \frac{1}{19}$$

Ученик у доски.б) $f(x) = 2x^2 - 3$, $x_0 = 3$, $\Delta x = -0.2$

Самостоятельно: Найдите приращение функции f в точке x_0

B)
$$f(x) = 3x + 1$$
, $x_0 = 5$, $\Delta x = 0.01$
r) $f(x) = \frac{x^2}{2}$, $x_0 = 2$, $\Delta x = 0.1$

Выполнить на компьютерах «Математика — учебное электронное издание 5-11» задания «Приращение аргумента и приращение функции - N2 I-4». Результаты выполнения заносятся в журнал программы. Правильность решения проверяется всей группой сверяя свои результаты с результатом программы.

3.2. Понятие «Производная»

- Мы усвоили понятие приращение функции и приращение аргумента, что позволяет нам перейти к рассмотрению понятия «Производная». Формулировка определения производной основано на понятии предела.

Производной функции f в точке x_0 называется число, к которому стремится разностное отношение $\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ при Δx , стремящемся к нулю.

Производная функции f в точке хо обозначается $f'(x_0)$ (читается: «эф штрих от x_0 »).

3.3.Схема вычисления производной по определению

- **1.** С помощью формулы, задающей функцию f, находим ее приращение в точке x_0 : $\Delta f = f(x_0 + \Delta x) f(x_0)$
- **2.** Находим выражение для разностного отношения $\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, которое затем преобразуем упрощаем, сокращаем на Δx и т.д.
- **3.** Выясняем, к какому числу стремится $\frac{\Delta f}{\Delta x}$, если считать что Δx стремится к нулю.

(дежурный раздает памятки «Вычисление производной по пределению»)

 Рассмотрим вычисление производной по данной схеме на конкретном примере:

Пример 1. Найдем производную функции $f(x)=x^3$ в точке x_0 .

Будем действовать используя памятку.

1.
$$\Delta f = (x_0 + \Delta x)^3 - x_0^3 = 3x_0^2 \Delta x + 3x_0 (\Delta x)^2 + (\Delta x)^3$$

$$2. \quad \frac{\Delta f}{\Delta x} = 3x_0^2 + 3x_0 \Delta x + (\Delta x)^2 (\Delta x \neq 0)$$

- 3. Заметим, что $3x_0^2$ постоянно, а при $\Delta x \to 0$ очевидно, что $3x_0\Delta x \to 0$ и $(\Delta x)^2 \to 0$, а значит $3x_0\Delta x + (\Delta x)^2 \to 0$. Получаем $\frac{\Delta f}{\Delta x} \to 3x_0^2$ при $\Delta x \to 0$.
 - 4. Следовательно $f'(x_0) = 3x_0^2$.

Пример 2. Найдем производную функции f(x)=kx+b (k, b - nостоянны)в точке x_0 .

1.
$$\Delta f = (k(x_0 + \Delta x) + b) - (kx_0 + b) = k\Delta x$$

2.
$$\frac{\Delta f}{\Delta x} = k$$

- 3. Поскольку k- постоянная, $\frac{\Delta f}{\Delta x}$ постоянное число при любом Δx , и, значит, $\frac{\Delta f}{\Delta x} \to k$ при $\Delta x \to 0$.
- 4. Итак, (kx+b)'=k
- Для закрепления решим у доски №194

(задания решаются параллельно: слабых учащихся вызывают к доске, а более сильные пробуют решить самостоятельно в тетрадях. После решения обязательно сверить результаты с доской)

Учащиеся получают карточки-консультанты.

194. Пользуясь карточкой-консультантом, найдите значения производной функции f, если:

a)
$$f(x) = x^2$$
- 3x в точках -1; 2;
б) $f(x) = 2x^3$ в точках 0; 1;
в) $f(x) = \frac{1}{x}$ в точках -2; 1;
г) $f(x) = 4$ - x^2 в точках 3; о.

3.4. Таблица производных

-Часто встречаются задания, в которых неудобно, долго вычислять производную по определению. Поэтому существует таблица производных, которая помогает и облегчает работу по нахождению производной. Данной таблицей пользоваться очень просто. В ней представлена функция и найдена ее производная. Вам нужно найти необходимую функцию и посмотреть, чему равна ее производная. Давайте вместе прочитаем данную таблицу (дежурный раздает всем учащимся таблицы производных).

Функция	Производная
<i>y=C</i>	y'=0
y=x	y´=1
y=kx	y´=k
y=kx+m	y´=k
$y=x^m$	$y'=mx^{m-1}$
$y=k x^m$	$y'=kmx^{m-1}$
$y=\frac{1}{x}$	$y'=-\frac{1}{x^2}$
$y=\sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$
$y=\sin x$	y´=cos x
y=cos x	$y' = -\sin x$
y=tg x	$y' = \frac{1}{\cos^2 x}$
y=ctg x	$y' = -\frac{1}{\sin^2 x}$

- Давайте вычислим производную функции используя таблицу:

(При работе с заданиемучащиеся по цепочке выходят к доске, называют функцию, показывают в таблице соответствующую формулу, при необходимости называют постоянный множитель и под руководством преподавателя записывают решение на доске)

a)
$$y=2.5$$

$$u) y=2x^{-2}$$

$$\kappa$$
) $y=3\sqrt{x}$

e)
$$y=7.5x$$

$$n$$
) $y=\sin x$

$$e) \quad y=-10x$$

$$M$$
) $y=2\cos x$

$$\partial$$
) $y=x^2$

$$H$$
) $y=3\sin x$

e)
$$y=2x^{5}$$
 o) $y=\frac{2}{x}$
 3 $y=x^{-2}$ p) $y=-\frac{2}{3x}$

3.5.Правила дифференцирования

Мы рассматривали с вами простые задания, в которых дана одна функция и с этой функцией не выполняют ни каких операций. Но если мы рассмотрим такой пример : $y = \frac{1+2x}{3-5x}$. Как найти производную?

Для вычисления производных используют правила дифференцирования

Пр 1. Если функции и и v дифференцируемы в точке хо, то их сумма дифференцируема в этой точке и (u+v)'=u'+v'

Пример:

$$f(x) = x^2 + x^3$$
, $u = x^2$, $v = x^3$, $f'(x) = (x^2)' + (x^3)' = 2x + 3x^2$

Лемма. Если функция f дифференцируема в точке x_0 , то она непрерывна в этой точке: $\Delta f \to 0$ при $x \to x_0$, т.е. $f(x_0 + \Delta x) \to f(x_0)$ при $\Delta x \to 0$.

 $IIp\ 2$. Если функции и и v дифференцируемы в точке хо, то их произведение дифференцируемо в этой точке и (uv)' = u'v + uv'

Пример:
$$f(x) = x^3(4+x^2)$$
, $u = x^3$, $v = 4+x^2$, $f'(x) = (x^3)'(4+x^2) + x^3(4+x^2)' = 3x^2(4+x^2) + x^3(2x) = 12x^2 + 3x^4 + 2x^4 = 12x^2 + 5x^4$

Следствие. Если функция и дифференцируема в x_o , а C постоянная, то функция Cи дифференцируема в этой точке и (Cu)' = Cu'.

Пр 3. Если функции и и v дифференцируемы в точке x_o и функция v не равна нулю в этой точке, то частное $\frac{u}{v}$ также дифференцируемо в x_o и $\left(\frac{u}{v}\right)^{/} = uv^{/}$

$$\frac{u^{\prime}v-uv^{\prime}}{v^{2}}$$

Пример:
$$f(x) = \frac{1+2x}{3-5x}$$
, $u = 1+2x$, $v = 3-5x$,
$$f'(x) = \frac{(1+2x)'(3-5x)-(1+2x)(3-5x)'}{(3-5x)^2} = \frac{2(3-5x)+(1+2x)5}{(3-5x)^2} = \frac{6-10x+5+10x}{(3-5x)^2} = \frac{11}{(3-5x)^2}$$

Для закрепления правил дифференцирования просмотр видеокурса «Математика 7- 11» (правила дифференцирования).

Составьте математическую карту темы.

4. Закрепление изученного

- На конкретных примерах рассмотрим, как пользоваться данными правилами (задания решаются под руководством учителя. Задания стоящие под буквой а) учитель решает на доске с четким объяснением. При работе с заданиями следует постоянно обращаться к правилам дифференцирования. Учащимся предлагается, по желанию, решить задания самостоятельно или у доски. Учащиеся, которые выполняли задания самостоятельно,могут пользоваться карточкой-консультантом, обязательно сверяют свои решения с доской. Первые учащиеся, справившиеся с заданиями,подносят тетради на проверку преподавателью.)

Найдите производные функций (208—211).

1. - a)
$$f(x) = x^2 + x^3$$
; 6) $f(x) = \frac{1}{x} + 5x - 2$;
B) $f(x) = x^2 + 3x - 1$; 7) $f(x) = x^3 + \sqrt{x}$.
2. - a) $f(x) = x^3 (4 + 2x - x^2)$; 6) $f(x) = \sqrt{x} (2x^2 - x)$;
B) $f(x) = x^2 (3x + x^3)$; 7) $f(x) = (2x - 3) (1 - x^3)$.
3. - a) $y = \frac{1 + 2x}{3 - 5x}$; 6) $y = \frac{x^2}{2x - 1}$; B) $y = \frac{3x - 2}{5x + 8}$; 7) $y = \frac{3 - 4x}{x^2}$.
4. - a) $y = x^8 - 3x^4 - x + 5$; 6) $y = \frac{x}{3} - \frac{4}{x^2} + \sqrt{x}$;
B) $y = x^7 - 4x^5 + 2x - 1$; 7) $y = \frac{x^2}{2} + \frac{3}{x^3} + 1$.

5. Подведение итогов

- C какими новыми понятиями вы познакомились на сегодняшнем занятии
- что такое приращение функции и приращение аргумента и как они вычисляются
 - дайте определение производной
 - как вычислить производную с помощью определения?
 - -как еще можно вычислить производную?
 - -какие правила дифференцирования мы узнали?
 - -какие новые правила необходимо занести в математический дневник?

6. Задание на дом

- занести необходимые правила в математический дневник (из учебника «Алгебра и начала анализа 10-11 кл» Колмогоров А.Н.)
 - подготовить доклады на тему «Из истории «Производной»»
 - выучить основные понятия, правила, и таблицу производных
 - начать выполнение домашней самостоятельной работы

7. Рефлексия

Откройте и заполните свои математические дневники.

Заполните колонку «Рекомендации себе» ответами на следующие вопросы:

- 1. Что Вам понравилось на уроке?
- 2. Довольны ли Вы своей работай на уроке?
- 3. Устали ли Вы за урок?
- 4. Был ли материал урока, для Вас, понятен, полезен, интересен?
- 5. Какой материал необходимо повторить?