Методы решения уравнений высших степеней. Метод Горнера.

Подобные задания, содержащие уравнения высших степеней, в последние годы стали появляться в ЕГЭ, олимпиадных заданиях по математике, при вступительных экзаменах в ВУЗы. Большинство учащихся с трудом справляются с решением уравнений со степенью выше 3, поскольку в школьном курсе алгебры при непрофильном обучении отводится этой теме малое количество времени, но умение решать такие уравнения необходимо при написании экзамена в форме ЕГЭ, при решении части С, причем математика является обязательным для сдачи предметом.

1. Методы решения уравнений высших степеней различными способами.

1.1.Метод замены переменной.

Пример 1. Дано:
$$(x^2-9)^2-8(x^2-9)+7=0$$

Решение. Введем новую переменную, обозначив x^2 -9=t, тогда получаем:

$$t^2-8t+7=0$$
, D= $t^2-4ac=36$, $t_1=7$; $t_2=1$.

Возвращаемся к "старой" переменной x^2 -9=1, $x=\pm\sqrt{10}$; x^2 -9=7, $x=\pm4$.

Omeem:
$$x_1 = +\sqrt{10}$$
; $x_2 = -\sqrt{10}$; $x_3 = -4$; $x_4 = 4$.

Пример 2. Дано:
$$x(x + 1)(x + 2)(x + 3) = 24$$

Решение. Перемножим первый и четвертый множители, второй и третий. Получим:

$$(x^2 + 3x)(x^2 + 3x + 2) = 24$$

Вводим замену: $x^2 + 3x = t$, тогда t(t + 2) = 24, $t^2 + 2t - 24 = 0$, $t_1 = -6$; $t_2 = 4$. Возвращаемся к "старой" переменной, получим: $x^2 + 3x = -6$, $x^2 + 3x + 6 = 0$, D < 0, уравнение не имеет действительных корней.

Уравнение $x^2 + 3x = 4$ имеет корни $x_1 = -4$, $x_2 = 1$.

Omeem: $x_1 = -4$, $x_2 = 1$.

Пример 3. Дано:
$$(x-4)(x^2+15+50)(x-2)=18x^2$$

Решение. Разложим на множители $x^2 + 15 + 50$.

$$x^2 + 15 + 50 = 0$$
, $x_1 = -5$, $x_2 = -10$, тогда $x^2 + 15x + 50 = (x + 5)(x + 10)$.

Уравнение примет вид: $(x-4)(x+5)(x+10)(x-2) = 18x^2$

Так как (-4)•5 = -20, 10•(-2) = -20, то перемножая первую скобку со второй, третью с четвертой, будем иметь: $(x^2 + x - 20)(x^2 + 8x - 20) = 18x^2$

Поскольку x = 0 не корень, разделим обе части уравнения на x^2 . Получим:

Вводим замену: — , тогда (t+1)(t+8)=18, т.е. $t^2+9t-10=0$, $t_1=-10$, $t_2=1$. Вернемся к исходной переменной: 1) 2) Решим первое уравнение $x^2 + 10x - 20 = 0$, D = 180, $x_1 = \frac{}{}$; $x_2 = \frac{}{}$ Решим второе уравнение $x^2 - x - 20 = 0$, D =81, $x_3 = -4$, $x_4 = 5$. *Omsem*: $x_1 = \frac{}{}$; $x_2 = \frac{}{}$; $x_3 = -4$, $x_4 = 5$. Пример 4. Дано: ——— <u>Решение.</u> Произведем преобразования в числителе дроби: $x^4+324=x^4+18^2$, $(x^2+18)^2=x^4+36x^2+324$, тогда $x^4+324=x^4+36x^2+324-36x^2$. Получим: Приведем левую и правую части к одному знаменателю: Приравняем к нулю. Получим:

Решим уравнение в числителе методом группировки:

Разложим на множители , приравняв к нулю:

, введем новую переменную: x^2 =t, получаем:

D=

$$x^2$$
-25=0, или x^2 +6 x +18=0

x= D=36-72=-36, D<0 – решений нет, т.е. вся парабола полностью лежит выше Ох и не пересекает ее.

Числитель равен нулю при x=5; -5, а знаменатель никогда не будет равен нулю.

Ответ: x=±5.

Пример 5. Дано: $(x-1)^4-x^2+2x-73$

Решение. Преобразуем:

$$(x-1)^4$$
- (x^2-2x+1) -72, $(x-1)^4$ - $(x-1)^2$ -72.

Введем новую переменную: $(x-1)^2$ =t, t^2 -t-72=0, D=1+288=289

$$t_{1,2} = ---$$
.

Возвращаемся к «старой» переменной:

1)
$$(x-1)^2=9$$
,

2)
$$(x-1)^2 = -8$$

$$x^2-2x+1-9=0$$
,

$$x^2-2x+1+8=0$$
,

$$x^2$$
-2x-8=0

$$x^2-2x+9=0$$

$$D=4$$
 - 36= -32, $D<0$ – решений нет.

$$x_{1,2} = ---$$

Ответ: x=4;-2.

Пример 6. Дано: $(x^2-2x-1)^2+3x^2-6x-13=0$

Решение. Выполним преобразования: $(x^2-2x-1)^2+3(x^2-2x-1)-10=0$.

Введем новую переменную: $x^2-2x-1=t$

$$T^2+3T-10=0$$

D=49
$$x_{1,2} = \frac{}{}$$

Возвращаемся к «старой» переменной:

1)
$$x^2-2x-1=-5$$
,

2)
$$x^2$$
-2x-1=2

$$x^2-2x-1+5=0$$
,

$$x^2-2x-1-2=0$$
,

$$x^2-2x+4=0$$

$$x^2-2x-3=0$$

D=4-16=-12, D<0 – решений нет. D=16

$$x_{1,2} = ---$$

Ответ: x=3;-1.

Пример 7. Дано:
$$2(x^2 + x + 1)^2 - 7(x - 1)^2 = 13(x^3 - 1)$$

x = 1 - не является корнем уравнения $(x-1)^2 \neq 0$

Разделим обе части уравнения на $(x-1)^2$, получим

$$2\left(\frac{x^2+x+1}{x-1}\right) - 7 - 13\frac{x^2+x+1}{x-1} = 0$$

Введем замену.

$$\Pi \text{усть } \frac{x^2 + x + 1}{x - 1} = y$$
, тогда

$$2y^2 - 13y - 7 = 0$$

$$y_1 = 7$$
; $y_2 = -\frac{1}{2}$

$$\frac{x^2 + x + 1}{x - 1} = 7$$

или

$$\frac{x^2 + x + 1}{x - 1} = -\frac{1}{2}$$

$$x^2 - 6x + 8 = 0$$

$$2x^2 + 3x + 1 = 0$$

$$x_1 = 4$$
 : $x_2 = 2$

$$x_3 = -1$$
; $x_4 = -\frac{1}{2}$

Other: $x_1 = 4$; $x_2 = 2$; $x_3 = -1$; $x_4 = -1/2$

Пример 8. Дано:

$$x^2 + \frac{81x^2}{(9+x)^2} = 40$$

Решение. В левой части выделим полный квадрат разности:

$$(x)^2 + (\frac{9x}{9+x})^2 + 2x \cdot \frac{9x}{9+x} - 2x \cdot \frac{9x}{9+x} = 40$$

Сгруппируем первый, второй и четвертый члены:

$$(x - \frac{9x}{9+x})^2 + \frac{18x^2}{9+x} = 40;$$

$$\left(\frac{x^2}{9+x}\right)^2 + \frac{18x^2}{9+x} = 40;$$

Вводим замену: $\frac{x^2}{9+x} = t$; $t^2 + 18t - 40 = 0$; $t_1 = -20$, $t_2 = 2$.

Вернемся к "старой" переменной, получим:

$$\begin{bmatrix} \frac{x^2}{9+x} = -20 \\ \frac{x^2}{9+x} = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{x^2}{9+x} = -20 \\ \frac{x^2}{9+x} = 2 \\ \frac{x^2}{9+x} = 2 \\ x \neq -9 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 = 1 + \sqrt{19} \\ x_2 = 1 - \sqrt{19} \end{bmatrix}$$

Omeem: $x_1 = 1 + \sqrt{19}$, $x_2 = 1 - \sqrt{19}$

Пример 9. Дано:

$$\frac{x^2 - 10x + 15}{x^2 - 6x + 15} = \frac{3x}{x^2 - 8x + 15}$$

<u>Решение.</u> x = 0 не является корнем уравнения, поэтому числитель и знаменатель каждой дроби делим на x:

5

$$\frac{x-10+\frac{15}{x}}{x-6+\frac{15}{x}} = \frac{3}{x-8+\frac{15}{x}}$$

вводим замену:

$$x-8+\frac{15}{x}=t$$
, тогда $\frac{t-2}{t+2}=\frac{3}{t}$

Решим это уравнение:

$$\frac{t-2}{t+2} = \frac{3}{t} \qquad \iff \begin{cases} t^2 - 5t - 6 = 0 \\ t + 2 \neq 0 \\ t \neq 0 \end{cases} \iff \begin{cases} t_1 = 6 \\ t_2 = -1 \end{cases}$$

Вернемся к "старой" переменной:

$$\begin{bmatrix} x - 8 + \frac{15}{x} = 6 \\ x - 8 + \frac{15}{x} = -1 \end{bmatrix} \iff \begin{bmatrix} x^2 - 14x + 15 = 0 \\ x^2 - 7x + 15 = 0 \end{bmatrix}$$

Решаем первое уравнение $x^2 - 14x + 15 = 0$

$$x_1 = 7 + \sqrt{34}$$
; $x_2 = 7 - \sqrt{34}$

Второе уравнение не имеет действительных корней.

Omsem:
$$x_1 = 7 + \sqrt{34}$$
; $x_2 = 7 - \sqrt{34}$.

Пример 10. Дано:

Решение. Раскроем скобки в правой части уравнения. Получим:

Введем новые переменные: $(x-1)^2=a$; $(x+1)^2=b$, получаем:

 $a^2+9b^2-10ab=0$, поделим на a^2 , 1+9(-2-10(-)), вводим новую переменную и решаем квадратное уравнение: –

6

$$9t^2-10t+1=0$$
, D=100-36=64, $t_{1,2}=$ -

Возвращаемся к «старым» переменным: 1) $(x+1)^2 = (x-1)^2$; 2) $(x-1)^2 = 9(x+1)^2$.

Решаем уравнения:

1)
$$x^2+2x+1=x^2-2x+1$$
, 2) $x^2-2x+1=9x^2+18x+9$,

$$4x=0$$
, $-8x^2-20x-8=0$
 $x=0$. $D=400-64\cdot 4=144$
 $x_{1,2}=\frac{}{}$

Ответ: x=0; -2; -

1.2.Метод группировки.

Пример 1. Дано: - — — —

Решение. Сгруппируем слагаемые в левой части, но следует заметить, что x=0; x=-1; x=-3; x=-4 не могут быть решениями. Получим:

Проводим преобразования и получаем:

$$x_1$$
=-2. Введем замену: x^2 +4 x = t , тогда – —

Решая уравнения, получаем:

Подставляем значение t, получаем уравнение:

$$x^2 + 4x = -$$

$$x^2+4x+1,5=0$$

Пример 2. Дано: $x^4+2x^3+2x+1=0$

Решение. Поделим на уравнение на x^2 , получим:

 x^2+2x+- — перегруппируем слагаемые таким образом:

$$(x^2+--$$

$$(x+-^2-2+2($$

вводим новую переменную: t=x+-, $t^2+2t-2=0$, D=4+8=12,

Подставляем обратно:

1)
$$x+ x^2 + (1-)x +1 = 0$$
, $D=-1-2$ <0 – решений нет.

2)
$$x+-=$$
 , $x^2 + (1+)x + 1 = 0, D= , x_{1,2}=$.

Пример 3. Дано: $x^4+x^3-72x^2+9x+81=0$

Решение. Поделим уравнение на x^2 и сгруппируем:

$$x^2+x-72+-$$
 —=0,

$$(x^2+18+--+(x+-$$

 $(x+-)^2+(x+-)-90=0$, вводим новую переменную: t=x+-, решаем уравнение: $t^2+t-90=0$, D=1+360=361,

 $t_{1.2} = -----$

Решаем уравнения, подставляя значения t:

1)
$$x+=-10$$
, $x = 0$
 $x^2+10x+9=0$, $D=100-36=64$
 $x_{1,2}=----$

2)
$$x+=9$$
, $x = 0$
 $x^2-9x+9=0$, $D=81-36=45$
 $x_{3,4}=\frac{-}{}$.

Otbet: x_1 $x_2=-1; x_{3,4}=$

1.3. «Схема Горнера»

<u>Определение.</u> Уравнение $p_0x^n + p_1x^{n-1} + p_2x^{n-2} + \dots + p_{n-1}x + p_n = 0$, где n — натуральное число, а - произвольные постоянные коэффициенты, называется **целым рациональным уравнением n** — **й степени**.

Теорема. Если целое рациональное уравнение с целыми коэффициентами имеет целые корни, то они являются делителями свободного члена.

Теорема Безу. Остаток от деления многочлена $p_0x^n + p_1x^{n-1} + p_2x^{n-2} + \dots + p_{n-1}x + p_n$ на двучлен харавен P(a).

Рассмотрим решение уравнений высших степеней, используя метод деления с помощью схемы Горнера:

Если
$$p_0x^{n-1}+p_1x^{n-1}+p_2x^{n-2}+\ldots+p_{n-1}x+p_n=(b_0x^{n-1}+b_1x^{n-2}+\ldots+b_{n-2}x+b_{n-1})(x-a)$$

	P_0	\mathbf{P}_1	P_2	\mathbf{P}_3	 P_{n-1}	P_n
a	$b_0 = p_0$	$b_1 = p_1 + b_0$	$b_2 = p_2 + b_1$	$b_3 = p_3 + b_2$	$b_{n-1}=p_{n-1}+b_{n-2}$ a	$b_n = p_n + b_{n-1}$ a

Пример 1. Дано: $x^5 - 5x^4 - 9x^3 + 41x^2 + 32x - 60 = 0$. Делители свободного числа: , но это очень большое количество делителей, поэтому можно воспользоваться тем, что если сумма коэффициентов равна 0, то один из корней 1.

1-5-9+41+32-60=0
$$\Rightarrow$$
 1 – корень.

	1	-5	-9	41	32	-60
1	1	-4	-13	28	60	0
2	1	-2	-17	-6	20	-
3	1	-1	-16	-20	0	
4	1	3	-4	0		
5	1	4	4	0		

$$(x-1)(x-3)(x-5)(x+4x+4)=0$$

$$(x-1)(x-3)(x-5)(x+2)^2 = 0$$

$$x-1=0$$
, или $x-3=0$, или $x-5=0$, или $(x+2)^2=0$, $x=1$. $x=3$. $x=5$. $x=-2$.

Ответ: 1; 3; 5; -2.

Пример 2. $x^6 - x^5 - 8x^4 + 14x^3 + x^2 - 13x + 6 = 0$. Делители свободного числа:

	1	-1	-8	14	1	-13	6
1	1	0	-8	6	7	-6	0
1	1	1	-7	-1	6	0	
1	1	2	-5	-6	0		
-1	1	1	-6	0			

$$(x-1)^3(x+1)(x^2+x-6)=0$$

$$(x-1)^3(x+1)(x+3)(x-2) = 0$$

$$(x-1)^3=0$$
, или $x+1=0$, или $x+3=0$, $x-2=0$, $x=1$. $x=-3$. $x=2$.

Ответ: 1; -1; -3; 2.

Пример 3. Решить уравнение: $x^3 - 5x + 4 = 0$

Определим корни многочлена третьей степени

$$\frac{p}{q}:\pm 1;\pm 2;\pm 4$$

$$f(1) = 1 - 5 + 4 = 0$$

Одним из корней является x = 1

	1	0	- 5	4
1	1	1	- 4	0

$$x^3 - 5x + 4 = 0$$

$$(x-1)$$
 $(x^2+x-4)=0$ $x-1=0$, $u\pi u$ $x^2+x-4=0$ $x=1$. $D=1+16=17$ $x_1=\frac{-1-\sqrt{17}}{2}$; $x_2=\frac{-1+\sqrt{17}}{2}$ Ответ: 1 ; $\frac{-1-\sqrt{17}}{2}$; $\frac{-1+\sqrt{17}}{2}$

Пример 4. Дано: $6x^4$ - $29x^3$ - $89x^2$ -19x+35=0

Решение. Делители свободного числа:

Находим по схеме Горнера целочисленные решения уравнения:

	6	-29	-89	-19	35
1	6	-23	-112	-131	
-1	6	-35	-54	35	0
5	6	1	-84	-439	
7	6	13	2	-5	0

Итак,
$$6x^4$$
- $29x^3$ - $89x^2$ - $19x$ + 35 = $(x+1)(x-7)(6x^2$ + $7x$ - $5)$ = 0 , $x+1$ = 0 или x - 7 = 0 или $6x^2$ + $7x$ - 5 = 0 x_1 =- 1 , x_2 = 7 , x_3 ,4= x_3 = x_4 = x_4 = x_5 =

Ответ:

Пример 5. Решить уравнение: $x^5+5x-42=0$

Решение. Делители свободного числа:

Находим по схеме Горнера целочисленные решения уравнений:

	1	0	0	0	5	-42	
-1	1	-1	1	-1	6		
1	1	1	1	1	6		
-2	1	-2	4	-8	21		
2	1	2	4	8	21	0	Корень

 $x^4 + 2x^3 + 4x^2 + 8x + 21 = 0$

Делители свободного числа:

	1	2	4	8	21
-1	1	1	3	5	6
1	1	3	7	15	36
-	1	-	403	-8455	177576
21		19			
21	1	23	487	10235	214956

Otbet: x=2.

Пример 6. Дано: x⁴-8x+63=0

Решение. Делители свободного числа:

Решаем по схеме Горнера:

	1	0	0	-8	63
-1	-1	1	-1	-7	70
1	1	1	1	-7	70
-63	1	63	-3969	Не корень	
63	1	63	3969	Не корень	

Ответ: решений нет.

Пример 7. Решить уравнение: $x^4-4x^3-13x^2+28x+12=0$

Решение. Делители свободного числа:

По схеме Горнера находим целочисленные решения уравнения:

	1	-4	-13	28	12	
1	1	-3	-16	12	24	
2	1	-2	-17	-6	0	Корень
3	1	-1	-16	-20		
-3	1	-7	8	4	0	Корень

Уравнение принимает вид: $(x-2)(x+3)(x^2-5x-2)=0$

x-2=0 или x+3=0 или $x^2-5x-2=0$

$$x_1=2, x_2=-3, x_{3,4}=\frac{-}{-}$$

Otbet: $x_1=2, x_2=-3, x_{3,4}=$

Список литературы:

- 1. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч.1 Учебник для учащихся общеобразовательных учреждений (профильный уровень). А.Г. Мордкович. Изд. «Мнемозина», 2010.
- 2. Профильное обучение математике старшеклассников. Учебно-дидактический комплекс. Новосибирск. Сиб. унив. изд-во, 2003.
- 3. Математика. Интенсивный курс подготовки к экзамену. О. Ю. Черкасов, А. Г. Якушев. Москва, изд. "Айрис", 1997.
- 4. Звавич Л. И., Шляпочник Л. Я., Чинкина М. В., Алгебра и начала анализа 8–11. Дидактические материалы, М: Дрофа, 1999.
- 5. Ивлев Б. М., Задачи повышенной трудности по алгебре и началам анализа: учебное пособие для 10–11 классов средней школы, М: Просвещение, 1990.

- 6. М. И. Шабунин. Алгебра и начала анализа. Дидактические материалы для 10-11 классов.
- Тумаркин Л.А. «История математики», Москва, 1975 г.
 Иванов К. Б., Сборник задач для старшеклассников, Волгоград, 2000.