Bl

Билет на автобус стоит 15 рублей. Какое максимальное число билетов можно будет купить на 100 рублей после повышения цены билета на 20%?

Решение

І способ:

$$20\% = \frac{20}{100} = 0.2.$$

Цена билета после повышения увеличилась в 1,2 раза (1+0,2=1,2):

Для вычисления максимального числа билетов, которых можно купить на 100 рублей после повышения цены билета:

100:18=5 билетов

$$-\frac{100}{90}|_{5}^{18}$$

$$\frac{100}{(10)}$$

Ответ: 5 билетов.

II способ:

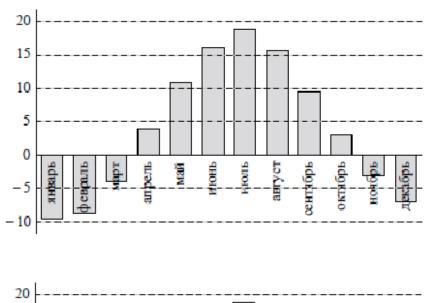
$$20\% = \frac{20}{100} = \frac{1}{5}.$$

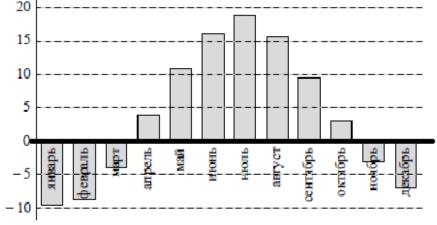
Цена билета увеличилась на:

$$15 \cdot \frac{1}{5} = 3$$
 рубля.

Один билет после повышения цены стоит:

На 100 рублей можно купить максимально:

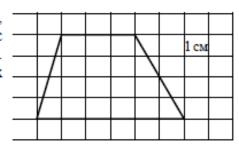

100:18=5 билетов (10 рублей – сдача).

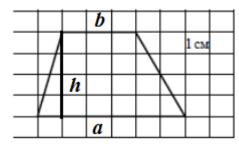

Ответ: 5 билетов.

5				
---	--	--	--	--

 \mathbf{B}_{2}

На диаграмме показана среднемесячная температура воздуха (в градусах Цельсия) в Ярославле по результатам многолетних наблюдений. Найдите по диаграмме количество месяцев, когда средняя температура в Ярославле была отрицательной.




Ниже 0 на диаграмме расположены столбики: январь, февраль, март, ноябрь, декабрь.

Ответ: 5 месяцев

ВЗ Найдите площадь четырёхугольника, пизображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рисунок). Ответ дайте в квадратных сантиметрах.

Решение

$$a=6cm$$
 $b=3cm$ $h=4cm$

$$S_{\text{трап}} = \frac{a+b}{2} \cdot h = \frac{6+3}{2} \cdot 4 = 18 \text{см}^2$$

Ответ 18см²

8	
---	--

B4 Строительная фирма планирует купить 70 м³ пеноблоков у одного из трёх поставщиков. Цены и условия доставки приведены в таблице. Сколько рублей нужно заплатить за самую дешёвую покупку с лоставкой?

Постав- щик	Стонмость пеноблоков (руб. за 1 м ³)	Стонмость доставки (руб.)	Дополнительные условия доставки
A	2 600	10 000	Нет
Б	2 800	8 000	При заказе товара на сумму свыше 150 000 рублей доставка бесплатная
В	2 700	8 000	При заказе товара на сумму свыше 200 000 рублей доставка бесплатная

Решение

Поставшик А:

2600руб · 70м³ +10000руб. =182000руб. + 10000руб.=192000 рублей.

Поставшик Б:

2800руб · 70м³ = 196000 рублей. Доставка бесплатная, так как сумма больше 150000 рублей.

Поставщик В:

2700руб · 70м³ = 189000 рублей. За доставку платим 8000 рублей. Получаем 189000руб. + 8000руб. = 197000 рублей.

Выбираем поставщика А, предлагающего самую дешевую покупку с доставкой.

Ответ: 192000 рублей.

	9 2	O	0	0						
--	-----	---	---	---	--	--	--	--	--	--

B5

Найдите корень уравнения $log_3(x-3) = 2$.

O.o.f:

$$x - 3 > 0$$

$$x > 3$$
;

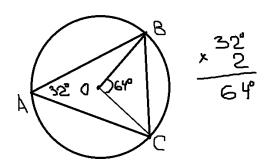
По определению логарифмов

$$x - 3 = 3^2$$

$$x - 3 = 9$$

$$x = 9 + 3$$

$$x = 12;$$


Ответ: 12.

	Τ	2					
ı		_					

В6 Треугольник *АВС* вписан в окружность с центром *O*. Найдите угол *ВОС*, если угол *ВАС* равен 32°.

Решение

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

∠BAC и ∠BOC опираются на одну и ту же дугу ВС: $∠BOC = 2 \cdot ∠BAC = 2 \cdot 32^0 = 64^0$.

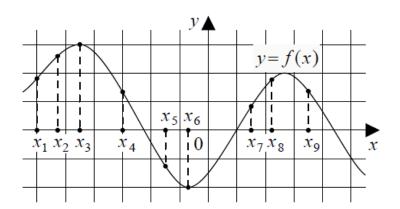
_		_	 	 	 	 	
	5 1	4					

В7 Найдите $\sin \alpha$, если $\cos \alpha = 0.6$ и $\pi < \alpha < 2\pi$.

Дано: Решение

$$cos\alpha = 0.6$$
, $sin^2\alpha = 1 - cos^2\alpha = 1 - 0.6^2 = 1 - 0.36 = 0.64$.

$$\pi < \alpha < 2\pi$$
, $\sin \alpha = -\sqrt{0.64} = -0.8$.

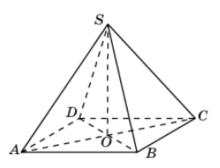

$$(\alpha \in III - IV \text{ чтв.})$$
 Ответ -0.8 .

Тр. найти:

 $sin\alpha = ?$

В8 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: $x_1, x_2, x_3, ..., x_9$. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.

Решение


Если производная функции в каждой точке некоторого интервала отрицательна, то на этом интервале функция убывает.

Среди этих девяти точек на интервале убывания лежат точки: x_{4} , x_{5} , x_{9} .

Ответ: 3

	3											
--	---	--	--	--	--	--	--	--	--	--	--	--

 $oldsymbol{B9}$ Диагональ AC основания правильной четырёхугольной пирамиды SABCD равна 6. Высота пирамиды SO равна 4. Найдите длину бокового ребра SB .

Решение

Основание правильной четырехугольной пирамиды – квадрат.

Основание высоты правильной четырехугольной пирамиды – точка пересечения диагоналей.

Точкой пересечения диагонали квадрата делятся пополам.

Рассмотрим прямоугольный ΔSOB , где: OB=3, SO=4.

По теореме Пифагора:

$$SB^2 = OB^2 + SO^2 = 3^2 + 4^2 = 9 + 16 = 25,$$

 $SB^2 = 25$
 $SB=5$

Ответ: 5

독							
_	l			l			

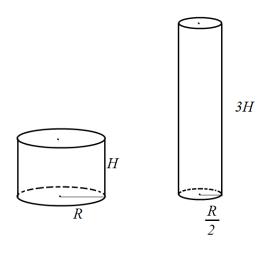
B10 B BCT

В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Решение

Всего событий -25, из них количество ожидаемых равно 23. Вероятность выполнения одного ожидаемого события:

$$P = \frac{23}{25} = 0.92.$$

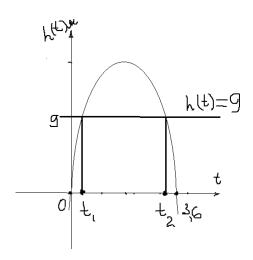

Ответ: 0,92

- * -

В11 Объём первого цилиндра равен 12 м³. У второго цилиндра высота в три раза больше, а радиус основания в два раза меньше, чем у первого. Найдите объём второго цилиндра (в м³).

Решение

$$V = \pi R^2 H$$


$$V_1 = \pi R^2 H = 12 \text{ m}^3$$

$$V_2 = \pi \cdot \left(\frac{R}{2}\right)^2 \cdot (3H) = \frac{3}{4} \cdot \pi R^2 H = \frac{3}{4} \cdot 12 = 9 \text{ m}^3.$$

Ответ: 9 м³.

9

В12 Камень брошен вертикально вверх. Пока камень не упал, высота, на которой он находится, описывается формулой $h(t) = -5t^2 + 18t$, где h- высота в метрах, t- время в секундах, прошедшее с момента броска. Сколько секунд камень находился на высоте не менее 9 метров.

Решение (І способ)

Решая уравнение h(t) = 9 вычисляем t_1 - момент времени, начиная с которого мяч поднимается выше 9м и

 t_2 — момент времени, начиная с которого мяч опускается ниже 9м:

$$-5t^{2} + 18t = 9$$

$$-5t^{2} + 18t - 9 = 0 \quad (:-1)$$

$$5t^{2} - 18t + 9 = 0$$

$$D = (-18)^{2} - 4 \cdot 5 \cdot 9 =$$

$$= 324 - 180 = 144 = 12^{2}.$$

$$t_{2} = \frac{18 + 12}{10} = \frac{30}{10} = 3$$

$$t_{1} = \frac{18 - 12}{10} = \frac{6}{10} = 0,3$$

$$t_{2} - t_{1} = 3 - 0,3 = 2,7 \text{сек.}$$

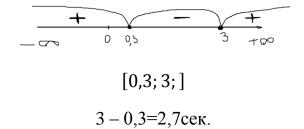
Ответ: 2,7сек.

2.7

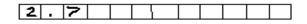
Решение (П способ)

Продолжительность времени, на которое мяч находился выше 9 м, вычисляем из неравенства:

$$-5t^{2} + 18t \ge 9$$


$$-5t^{2} + 18t - 9 \ge 0 \quad (:-1)$$

$$5t^{2} - 18t + 9 \le 0$$


$$t_{1} = 0,3; \quad t_{2} = 3;$$

$$5(t - 3)(t - 0,3) \le 0 \quad (:5)$$

$$(t - 3)(t - 0,3) \le 0$$

Ответ: 2,7сек.

В13 Весной катер идёт против течения реки в $1\frac{2}{3}$ раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в $1\frac{1}{2}$ раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Схема движения катера против течения весной и летом:

х - скорость течения реки весной. (х -1) -скорость течения реки летом.

скорость катера против течения весной: (у - х)

скорость катера против течения летом: (у - х +1)

Составляем систему уравнений:

$$\begin{cases} y + x = 1\frac{2}{3} \cdot (y - x) \\ y + (x - 1) = 1\frac{1}{2} \cdot (y - x + 1) \end{cases} \leftrightarrow \begin{cases} y + x = \frac{5 \cdot (y - x)}{3} \\ y + x - 1 = \frac{3 \cdot (y - x + 1)}{2} \end{cases} \leftrightarrow \begin{cases} 3 \cdot (y + x) = 5 \cdot (y - x) \\ 2 \cdot (y + x - 1) = 3 \cdot (y - x + 1) \end{cases} \leftrightarrow \begin{cases} 3y + 3x = 5y - 5x \\ 2y + 2x - 2 = 3y - 3x + 3 \end{cases} \leftrightarrow \begin{cases} 8x = 2y \\ 5x - 5 = y \end{cases} \leftrightarrow \begin{cases} y = 4x \\ y = 5x - 5 \end{cases} \to 4x = 5x - 5 \to 4x - 5x = -5 \to -x = -5 \end{cases}$$

$$x = 5 \text{ KM/}_{\text{H}}.$$

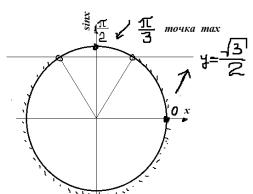
Ответ: x = 5 KM/ $_{\rm Y}$.

5						

В14 Найдите наибольшее значение функции

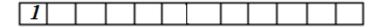
$$y = 2\cos x + \sqrt{3}x - \frac{\sqrt{3}\pi}{3}$$
 на отрезке $\left[0; \frac{\pi}{2}\right]$.

Решение


$$y' = -2\sin x + \sqrt{3}$$

$$\uparrow : y' > 0$$

$$-2\sin x + \sqrt{3} > 0$$


$$-2\sin x > -\sqrt{3} \qquad (:-2)$$

$$\sin x < \frac{\sqrt{3}}{2}$$

$$y_{\text{наиб}} = 2\cos\frac{\pi}{3} + \sqrt{3} \cdot \frac{\pi}{3} - \frac{\sqrt{3}\pi}{3} = 2 \cdot \frac{1}{2} = 1.$$

Ответ: 1

