Тренировочная работа №2 по ФИЗИКЕ

11 класс

Вариант № 1

айон
род (населенный пункт)
кола
Tacc
амилия
. вм
гчество

Физика. 11 класс. Вариант 1

Инструкция

На выполнение экзаменационной работы по физике отводится 4 часа (240 минут). Работа состоит из 3 частей, включающих 35 заданий.

Часть 1 содержит 25 заданий (A1–A25). К каждому заданию дается 4 варианта ответа, из которых правильный только один.

Часть 2 содержит 4 заданий (B1–B4), в которых ответ необходимо записать в виде набора цифр.

 $\ddot{\text{Часть}}$ $\ddot{\text{3}}$ состоит из 6 заданий (C1–C6), на которые требуется дать развернутый ответ.

При вычислении разрешается использовать непрограммируемый калькулятор.

Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа. Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у вас останется время. За выполнение различных по сложности заданий дается один или более баллов. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться вам при выполнении работы.

Десятичные приставки

Наимено- вание	Обозна- чение	Множи- тель	Наимено- вание	Обозна- чение	Множи- тель
вание	чение	тель	вание	чение	тель
гига	Γ	10 ⁹	санти	c	10^{-2}
мега	M	10 ⁶	милли	M	10 ⁻³
кило	К	10 3	микро	мк	10 ⁻⁶
гекто	Г	10 ²	нано	Н	10 ⁻⁹
деци	д	10^{-1}	пико	п	10^{-12}

Константы

число п	$\pi = 3.14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 / \text{kg}^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{ m A} = 6 \cdot 10^{23} \ { m моль}^{-1}$
скорость света в вакууме	$c = 3.10^8 \text{m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\epsilon_0} = 9.10^9 \text{ H} \cdot \text{m}^2/\text{K}\pi^2$
модуль заряда электрона (элементарный электрический заряд)	$e = 1.6 \cdot 10^{-19} \text{ Km}$
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж-c}$

Соотношение между различными единицами

температура	$0 \text{ K} = -273^{\circ}\text{C}$
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
1 атомная единица массы эквивалентна	931,5 МэВ
1 электронвольт	$1 \ \mathrm{pB} = 1.6 \cdot 10^{-19} \ \mathrm{Дж}$

Масса частиц

	,
электрона	$9,1\cdot10^{-31}$ кг ≈ $5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг ≈ $1,007$ а.е.м.
нейтрона	$1,675 \cdot 10^{-27} \text{ kr} \approx 1,008 \text{ a.e.m.}$

Плотность		подсолнечного масла	900 кг/м ³
воды	1000 кг/м ³	алюминия	2700 кг/м ³
древесины (сосна)	400 кг/м ³	железа	7800 кг/м ³
керосина	800 кг/м ³	ртути	$13600\ кг/м^3$

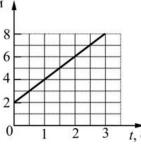
Удельная теплоемкость

воды	4,2·10 ³ Дж/(кг·К)	алюминия	900 Дж/(кг·К)
льда	$2,1\cdot10^{\ 3}\ $ Дж/(кг \cdot К)	меди	380 Дж/(кг·К)
железа	640 Дж/(кг·К)	чугуна	500 Дж/(кг·К)
свинца	130 Дж/(кг-К)		

Удельная теплота

парообразования воды	2,3·10 ⁶ Дж/кг
плавления свинца	$2,5\cdot10^{\ 4}$ Дж/кг
плавления льда	$3,3\cdot10^{\ 5}\ $ Дж/кг

Нормальные условия давление $10^5\,\Pi$ а, температура $0^\circ\mathrm{C}$


Молярная масса

азота	$28 \cdot 10^{-3} \text{ кг/моль}$	кислорода	$32 \cdot 10^{-3}$ кг/моль
аргона	$40 \cdot 10^{-3}$ кг/моль	лития	$6{\cdot}10^{-3}$ кг/моль
водорода	$2\cdot10^{-3}$ кг/моль	молибдена	96·10 ⁻³ кг/моль
воздуха	29·10 ⁻³ кг/моль	неона	20·10 ⁻³ кг/моль
гелия	$4 \cdot 10^{-3}$ кг/моль	углекислого газа	$44\cdot10^{-3}$ кг/моль

Часть 1

При выполнении заданий части 1 в бланке ответов № 1 под номером выполняемого вами задания (A1-A25) поставьте знак «X» в клеточке, номер которой соответствует номеру выбранного вами ответа.

На рисунке приведен график зависимости координаты x материальной точки от x, м времени t. Какая из зависимостей x(t)соответствует этому графику?

- **1)** x(t) = 2t

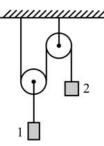
- **2)** x(t) = 2 + 2t **3)** x(t) = 2 2t **4)** x(t) = -2 + 2t
- Маленькая шайба соскальзывает без трения по желобу, изображенному на рисунке. В нижней точке A желоба ускорение шайбы направлено

- **1)** вниз (↓)
- **2)** BBepx (↑)
- **3)** вправо (→)
- **4)** влево (←)
- В таблице представлена зависимость удлинения Δx пружины от модуля F растягивающей ее силы. Направление силы совпадает с осью пружины. При каких удлинениях для этой пружины выполняется закон Гука?

<i>F</i> , H	0	10	20	30	40	50	60	70
Δx , cm	0	2	4	6	8	10,5	13,5	17

- 1) Как минимум, от 0 см до 8 см.
- 2) Как минимум, от 8 см до 17 см.
- 3) Как минимум, от 0 см до 17 см.
- 4) Ни при каких.

Пуля массой m, летевшая со скоростью \vec{v}_0 , попала в закрепленную доску и застряла в ней. Время взаимодействия пули и доски равно τ . Модуль средней mсилы, действовавшей на доску со стороны пули, равен



- 1) mv_0 / τ
- **2)** $2mv_0 / \tau$
- 3) $mv_0\tau$
- 4) $2mv_0\tau$

Покоившееся тело массой 1 кг подняли на высоту 2 м над землей, совершив при этом работу 30 Дж. Какую кинетическую энергию приобрело в результате это тело?

- **1)** 50 Дж
- **2)** 10 Дж
- **3)** 30 Дж
- **4)** 20 Дж

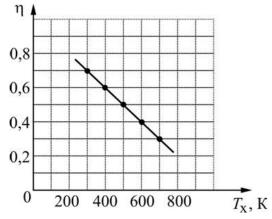
Изображенная на рисунке система находится в ////////////// равновесии. Блоки и нить очень легкие, трение отсутствует. Масса груза 1 равна 20 кг. Чему равна масса груза 2?

- 1) 60 Kr
- **2)** 40 κΓ
- **3)** 20 кг
- **4)** 10 кг
- Тело массой 2 кг движется по окружности радиусом 2 м с постоянной по модулю скоростью 3 м/с. Равнодействующая сил, приложенных к телу, направлена к центру окружности. Чему равен модуль этой силы?
 - 1) 4.5 H
- **2)** 3 H
- 3) 9 H
- **4)** 36 H
- Закрытый сосуд с идеальным газом падает с большой высоты в стоящий на земле ящик с песком. Температура окружающего воздуха всюду постоянна. После удара сосуд не деформировался и не разрушился. В результате
 - 1) потенциальная энергия газа относительно поверхности земли увеличивается, а внутренняя энергия газа остается без изменений.
 - 2) потенциальная энергия газа относительно поверхности земли уменьшается, а внутренняя энергия газа остается без изменений.
 - 3) потенциальная энергия газа относительно поверхности земли увеличивается, и внутренняя энергия газа также увеличивается.
 - 4) потенциальная энергия газа относительно поверхности земли уменьшается, а внутренняя энергия газа увеличивается.

Закон, согласно которому при постоянном объеме давление данной массы идеального газа изменяется прямо пропорционально его абсолютной температуре, называется законом

- 1) Бойля-Мариотта
- **2)** Шарля
- 3) Гей-Люссака
- 4) Дальтона

Идеальный A10 быть <math>pможет переведен из состояния состояние 2 различными способами. При каком способе (из числа изображенных на pV-диаграмме) газ совершит максимальную работу?



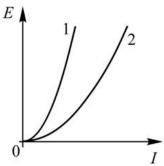
- **1)** 1→2
- **2)** $1 \rightarrow 4 \rightarrow 2$
- 3) $1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2$ 4) $1 \rightarrow 6 \rightarrow 2$

А11 Построить тепловой двигатель с КПД, равным 100%, невозможно, так как это

- 1) запрещено первым законом термодинамики.
- 2) запрещено вторым законом термодинамики.
- 3) технически очень сложно.
- 4) требует очень больших затрат материальных ресурсов.

На графике приведена зависимость КПД η идеальной тепловой машины от температуры $T_{_{\mathbf{x}}}$ ее холодильника. Чему равна температура нагревателя этой тепловой машины?

- 1) 500 K
- **2)** 700 K
- **3)** 1000 K
- 4) 1200 K


Потенциал поля точечного заряда q_1 в q_1 точке A равен 9 B, а потенциал поля точечного заряда q_2 в точке A равен –6 В. Каков будет в точке Aпотенциал поля, созданного зарядами \boldsymbol{q}_1 и \boldsymbol{q}_2 совместно?

- 1) 15 B
- **2)** –3 B
- **3)** –15 B
- **4)** 3 B

A14 Через участок электрической цепи, схема которого показана на рисунке, течет постоянный ток. Как относятся друг к другу напряжения $U_{\scriptscriptstyle 1}$ и U_{2} на резисторах 1 и 2?

- 1) $U_1: U_2 = 3:2$
- **2)** $U_1:U_2=2:3$
- **3)** $U_1:U_2=1:1$
- **4)** $U_1:U_2=1:2$

А15 На графике показаны зависимости энергии E магнитного поля от силы тока I для катушек 1 и 2. У какой из катушек больше индуктивность?

- **1**) У катушки 1
- **2)** У катушки 2
- 3) Индуктивности катушек одинаковы
- 4) Однозначно ответить нельзя

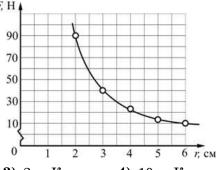
А16 Какие из описанных ниже колебательных процессов можно отнести к электромагнитным колебаниям?

- 1) Колебания груза на пружине в магнитном поле, создаваемом электромагнитом.
- 2) Колебания математического маятника в магнитном поле Земли.
- **3)** Колебания силы тока в контуре, состоящем из конденсатора и катушки индуктивности.
- 4) Все три описанных колебательных процесса.

А17 Луч света распространяется в воде и падает на границу раздела водавоздух. Показатель преломления воды равен n. При каких углах падения α будет наблюдаться полное внутреннее отражение света?

1)
$$\alpha \ge \frac{\pi}{2} - \arcsin \frac{1}{n}$$

2)
$$\alpha > \arcsin \frac{1}{n}$$


3)
$$\alpha \ge \frac{\pi}{2} - \arcsin n$$

4)
$$\alpha > \arcsin n$$

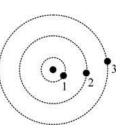
А18 Оптик изготовил дифракционную решетку, у которой на каждый миллиметр длины приходилось 100 штрихов. Чему равен период этой решетки?

- 1) 100 _{MM}
- **2)** 0.1 _{MM}
- **3)** 0,01 _{MM}
- **4)** 10^{-5} MM

На рисунке приведен график F, H и зависимости силы F отталкивания двух одинаковых точечных зарядов от расстояния r между ними. Чему равен модуль каждого заряда?

- 1) 0,2 мкКл
- **2**) 0,2 нКл
- 3) 2 мкКл
- **4)** 10 мкКл

A20 Фотон может характеризоваться частотой v или длиной волны λ . Какая из нижеприведенных формул позволяет вычислить энергию E фотона? Скорость света равна c.


1)
$$E = hc / \lambda$$

2)
$$E = hc / v$$

3)
$$E = h\lambda$$

4) $E = hv / \lambda$

А21 На рисунке схематически показаны стационарные орбиты электрона, обращающегося вокруг ядра в атоме водорода. На какой из этих орбит энергия электрона больше?

- **1**) На орбите 1
- **2**) На орбите 2
- **3**) На орбите 3
- 4) На всех трех орбитах энергия электрона одинаковая

А22 Изотопами называются атомы, ядра которых имеют в своем составе...

- 1) одинаковое количество нуклонов.
- 2) одинаковое количество нейтронов, но разное число протонов.
- 3) одинаковое количество протонов, но разное число нейтронов.
- 4) одинаковые периоды полураспада.

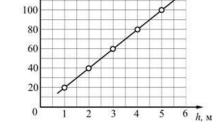
A23

При проведении радиоуглеродного анализа древнего образца древесины ученые установили, что концентрация атомов углерода ${}^{14}_6\mathrm{C}$ в нем в 3,45 раза меньше, чем в современных живых деревьях. Считая, что в современном живом дереве концентрация атомов углерода ${}^{14}_6\mathrm{C}$ такая же, какой она была в живых деревьях в древние времена, определите возраст образца. Период полураспада углерода ${}^{14}_6\mathrm{C}$ равен 5600 лет.

- **1)** ≈1600 лет
- **2)** ≈19300 лет
- 3) ≈6900 лет
- **4)** ≈10000 лет

A24

На шероховатом горизонтальном столе находится брусок массой 900 г. К бруску привязана нить, перекинутая через блок, который может вращаться практически без трения. К свисающему с блока концу нити последовательно прикрепляют грузы различной массы, как показано на рисунках. Какой вывод можно сделать на основании проведенных экспериментов о коэффициенте m трения скольжения между бруском и столом?

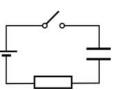

- 1) $\mu = 0.3$
- **2)** $\mu = 0.4$
- 3) $0.3 < \mu < 0.4$
- 4) Никаких выводов о величине µ сделать невозможно.

.

Груз поднимают над поверхностью ΔE , Дж земли. На графике приведена зависимость изменения потенциальной энергии ΔE груза от высоты h его полъема.

Какое(-ие) из утверждений соответствует(-ют) этой зависимости? А. Масса груза равна 2 кг.

Б. Приращение потенциальной энергии груза при его подъеме над землей прямо пропорционально высоте подъема.



- **1**) только A
- 2) только Б
- 3) и А, и Б
- 4) ни А, ни Б

Ответом к заданиям этой части (B1-B4) является последовательность цифр. Впишите ответы сначала в текст работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания, начиная с первой клеточки, без пробелов и каких-либо дополнительных символов. Каждую цифру пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.

B1

В электрической цепи, схема которой изображена на рисунке, конденсатор изначально не заряжен. Как изменяются после замыкания ключа следующие физические величины: энергия электрического поля конденсатора, сила тока в цепи, выделяемая в резисторе тепловая мощность?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

<u>их</u> изменение

- **А)** энергия электрического поля конденсатора
- 1) увеличивается

Б) сила тока в цепи

- 2) уменьшается
- **В**) выделяющаяся на резисторе тепловая мощность
- 3) не изменяется

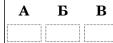
Ответ:

A	Б	\mathbf{B}

 $\mathbf{B2}$

В закрытом сосуде под поршнем находятся воздух и ненасыщенные пары воды. Медленно двигая поршень, объем сосуда увеличивают, сохраняя температуру постоянной. Как в результате изменятся следующие физические величины: концентрация паров воды в сосуде, относительная влажность воздуха, давление насыщенных паров воды?

Для каждой величины определите соответствующий характер изменения:


Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

их изменение

- А) концентрация паров воды в сосуде
- 1) увеличится
- Б) относительная влажность воздуха
- 2) уменьшится
- В) давление насыщенных паров воды
- 3) не изменится

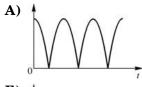
Ответ:

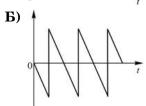
ВЗ Идеальный одноатомный газ в количестве v моль находится в закрытом сосуде объемом V при давлении p. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ

А) температура газа

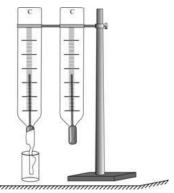
- **1**) *pV*
- Б) внутренняя энергия газа
- **2)** $\frac{3}{2}pV$
- $3) \frac{pV}{vR}$
- $\mathbf{4)} \ \frac{3pV}{2vR}$


Ответ:


Маленький шарик падает без начальной скорости с у некоторой высоты на закрепленную горизонтально стальную плиту и начинает подпрыгивать на ней. Потерь механической энергии нет. Принимая за начало процесса (t = 0) момент времени, в который шарик начинает падать, установите соответствие между графиками и физическими величинами, 0зависимости которых от времени эти графики могут


представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

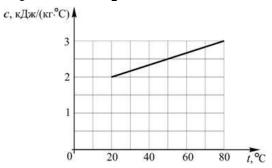


- 1) проекция скорости шарика на вертикальную ось
- 2) проекция ускорения шарика на вертикальную ось
- 3) кинетическая энергия шарика
- 4) потенциальная энергия шарика

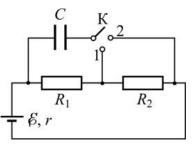
Часть 3

Задания С1-С6 представляют собой задачи, полное решение которых необходимо записать в бланке ответов № 2. Рекомендуется провести предварительное решение на черновике. При оформлении решения в бланке ответов № 2 запишите chauaa номер задания (C1 u m. d.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво. Полное правильное решение каждой из задач С2-С6 должно включать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и. при необходимости, рисунок, поясняющий решение.

Два одинаковых спиртовых термометра, закрепленных в штативе, находятся в комнате. Нижняя часть одного из них обмотана марлевым жгутом, свободный конец которого помещен в пустой стаканчик. В стаканчик наливают воду комнатной температуры, смочив всю марлю. Опишите, как и почему после этого будут изменяться показания термометров.



- C2ровных досок сделан представляющий собой двугранный угол с раствором $2\alpha = 90^{\circ}$. Желоб закреплен так, что его ребро горизонтально, а доски симметричны относительно вертикали. В желобе на боковой поверхности лежит цилиндр массой $m = 1 \, \text{кг.}$ Коэффициент трения между досками и цилиндром
 - равен $\mu = 0.2$. К торцу цилиндра приложена горизонтально направленная сила F = 3 H. Найдите модуль ускорения цилиндра.


Физика. 11 класс. Вариант 1

17

На рисунке приведен график зависимости удельной теплоемкости c некоторого тела от его температуры t. Какое количество теплоты Q нужно сообщить этому телу для того, чтобы повысить его температуру от $t_1=20~{\rm ^{\circ}C}$ до $t_2=80~{\rm ^{\circ}C}$? Масса тела $m=1~{\rm kr}$.

С4 В электрической цепи, схема которой изображена на рисунке, конденсатор С изначально не заряжен. Ключ К переводят в положение 1. Затем, спустя очень большое время, переключают его в положение 2, и снова ждут в течение достаточно большого промежутка времени. В результате перевода ключа в положение 2 энергия конденсатора увеличивается в n=9 раз. Найдите сопротивление резистора R_2 , если $R_1=10$ Ом.

- С5 При помощи тонкой собирающей линзы на экране, перпендикулярном главной оптической оси линзы, получено четкое изображение точечного источника света. Не трогая источник и экран, линзу передвинули от источника в сторону экрана на расстояние x=5 см, в результате чего на экране вновь получилось четкое изображение источника. Чему равно фокусное расстояние линзы, если изначально источник находился на расстоянии a=10 см от нее? Линзу перемещают вдоль ее главной оптической оси.
- С6 Узкий пучок света с длиной волны $\lambda = 420 \, \text{нм}$ падает на фотоприемник. Мощность светового потока этого пучка равна $P = 3, 3 \cdot 10^{-18} \, \text{Вт.}$ Найдите число n фотонов, падающих на фотоприемник за одну секунду.

Тренировочная работа №2 по ФИЗИКЕ

11 класс

Вариант № 2

Район
Город (населенный пункт)
Школа
Сласс
Рамилия
THECTRO

Физика. 11 класс. Вариант 2

Инструкция

На выполнение экзаменационной работы по физике отводится 4 часа (240 минут). Работа состоит из 3 частей, включающих 35 заданий.

Часть 1 содержит 25 заданий (A1–A25). К каждому заданию дается 4 варианта ответа, из которых правильный только один.

Часть 2 содержит 4 заданий (B1–B4), в которых ответ необходимо записать в виде набора цифр.

 $\ddot{\text{Часть}}$ $\ddot{\text{3}}$ состоит из 6 заданий (C1–C6), на которые требуется дать развернутый ответ.

При вычислении разрешается использовать непрограммируемый калькулятор.

Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа. Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у вас останется время. За выполнение различных по сложности заданий дается один или более баллов. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться вам при выполнении работы.

Десятичные приставки

Наимено- вание	Обозна- чение	Множи- тель	Наимено- вание	Обозна- чение	Множи- тель
гига	Г	10 9	санти	c	10^{-2}
мега	M	10 ⁶	милли	М	10^{-3}
кило	к	10 ³	микро	мк	10 ⁻⁶
гекто	Г	10 ²	нано	Н	10 ⁻⁹
деци	Д	10^{-1}	пико	П	10^{-12}

Константы

число п	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 / \text{kg}^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{ m A}=6{\cdot}10^{23}{ m моль}^{-1}$
скорость света в вакууме	$c = 3.10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi \epsilon_0} = 9.10^9 \text{H·м}^2 / \text{Кл}^2$
модуль заряда электрона (элементарный электрический заряд)	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж·c}$

Соотношение между различными единицами

температура	$0 \text{ K} = -273^{\circ}\text{C}$
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
1 атомная единица массы эквивалентна	931,5 МэВ
1 электронвольт	$1 \ \mathrm{pB} = 1.6 \cdot 10^{-19} \ \mathrm{Дж}$

Масса частиц

электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг ≈ $1,007$ а.е.м.
нейтрона	$1,675 \cdot 10^{-27}$ кг ≈ $1,008$ а.е.м.

Плотность		подсолнечного масла	900 кг/м ³
воды	1000 кг/м^3	алюминия	$2700\ \mathrm{kg/m}^3$
древесины (сосна)	400 кг/м^3	железа	$7800 \ { m kg/m}^3$
керосина	800 кг/м ³	ртути	$13600 \ \mathrm{kg/m}^3$

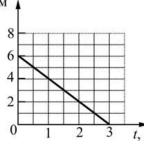
Удельная теплоемкость

воды	4,2·10 ³ Дж/(кг·К)	алюминия	900 Дж/(кг·К)
льда	$2,1\cdot10^{\ 3}$ Дж/(кг \cdot К)	меди	380 Дж/(кг·К)
железа	640 Дж/(кг·К)	чугуна	500 Дж/(кг·К)
свинца	130 Дж/(кг-К)		

Удельная теплота

парообразования воды	2,3·10 ⁶ Дж/кг
плавления свинца	$2,5\cdot10^{\ 4}$ Дж/кг
плавления льда	$3,3\cdot10^{\ 5}\ $ Дж/кг

Нормальные условия давление 10⁵ Па, температура 0°C


Молярная масса

азота	$28 \cdot 10^{-3} \text{ кг/моль}$	кислорода	$32 \cdot 10^{-3}$ кг/моль
аргона	$40\cdot10^{-3}$ кг/моль	лития	$6{\cdot}10^{-3}$ кг/моль
водорода	$2\cdot10^{-3}$ кг/моль	молибдена	96·10 ⁻³ кг/моль
воздуха	29·10 ⁻³ кг/моль	неона	20·10 ⁻³ кг/моль
гелия	$4\cdot10^{-3}$ кг/моль	углекислого газа	$44\cdot10^{-3}$ кг/моль

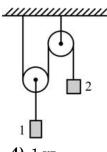
Часть 1

При выполнении заданий части 1 в бланке ответов № 1 под номером выполняемого вами задания (A1-A25) поставьте знак «X» в клеточке, номер которой соответствует номеру выбранного вами ответа.

На рисунке приведен график зависимости координаты x материальной точки от x, м времени t. Какая из зависимостей x(t)соответствует этому графику?

- 1) x(t) = 6 3t 2) x(t) = 3 6t 3) x(t) = 6 2t 4) x(t) = 6 + 2t
- Маленькая шайба движется без трения по гладкой горке, изображенной на рисунке, не отрываясь от нее. В верхней точке А горки ускорение шайбы направлено

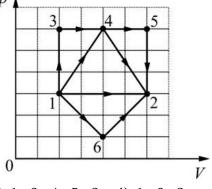
- **1)** вниз (↓)
- **2)** BBepx (↑)
- 3) вправо (\rightarrow)
 - **4)** влево (←)
- В таблице представлена зависимость удлинения Дх пружины от модуля F растягивающей ее силы. Направление силы совпадает с осью пружины. При каких удлинениях для этой пружины выполняется закон Гука?


F, H	0	1	2	3	4	5	6	7
Δx , cm	0	3	6	9	12	14,5	16,5	18

- 1) Как минимум, от 0 см до 12 см.
- **2)** Как минимум, от 12 см до 18 см.
- 3) Как минимум, от 0 см до 18 см.
- При любых.

Пуля массой m, летевшая со скоростью \vec{v}_0 , пробила закрепленную доску и потеряла при этом половину своей начальной скорости. Время взаимодействия пули и доски равно τ . Модуль средней силы, действовавшей mна пулю со стороны доски, равен

- 1) mv_0 / τ
- **2)** $2mv_0/\tau$ **3)** $\frac{mv_0}{2\tau}$
- **4)** $mv_0\tau/2$
- Покоившееся тело массой 2 кг подняли при помощи троса на высоту 1,5 м над землей, и при этом тело приобрело кинетическую энергию 10 Пж. Какая работа была совершена силой натяжения троса при полъеме?
 - **1**) 30 Дж
- **2)** 10 Дж
- **3)** 40 Дж
- **4)** 20 Дж
- равновесии. Блоки и нить очень легкие, трение отсутствует. Масса груза 2 равна 4 кг. Чему равна масса груза 1?



- 1) 8 Kr
- 2) 4 KT
- 3) 2 Kr
- **4**) 1 κΓ
- Тело массой 3 кг движется по окружности с постоянной по модулю скоростью 4 м/с под действием направленной к центру окружности силы, модуль которой равен 48 Н. Чему равен радиус окружности?
 - 1) 4 m
- **2**) 25 M
- **3)** 2 м
- **4)** 1 м
- **A8** Закрытый сосуд с идеальным газом медленно поднимают на большую высоту над землей. Температура окружающего воздуха всюду постоянна. В результате
 - 1) потенциальная энергия газа относительно поверхности земли увеличивается, а внутренняя энергия газа остается без изменений.
 - 2) потенциальная энергия газа относительно поверхности земли уменьшается, а внутренняя энергия газа остается без изменений.
 - 3) потенциальная энергия газа относительно поверхности земли увеличивается, и внутренняя энергия газа также увеличивается.
 - 4) потенциальная энергия газа относительно поверхности земли уменьшается, а внутренняя энергия газа увеличивается.

Закон, согласно которому при постоянном давлении объем данной массы идеального газа изменяется прямо пропорционально его абсолютной температуре, называется законом

- 1) Бойля-Мариотта
- **2)** Шарля
- 3) Гей-Люссака
- 4) Дальтона

Идеальный быть Pпереведен состояния 1 состояние 2 различными способами. При каком способе (из числа изображенных на pV-диаграмме) газ совершит минимальную работу?

- **1)** 1→2
- **2)** $1 \rightarrow 4 \rightarrow 2$
- 3) $1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2$ 4) $1 \rightarrow 6 \rightarrow 2$

Какой из перечисленных ниже циклических процессов не может быть осуществлен вследствие второго закона термодинамики?

А. Вся полученная от окружающих тел теплота без остатка превращается в механическую работу.

Б. Вся совершенная механическая работа без остатка превращается в теплоту, передающуюся окружающим телам.

- только А
- **2)** только Б
- 3) и А, и Б
- 4) оба процесса могут быть осуществлены

На графике приведена зависимость η КПД η идеальной тепловой машины от температуры $T_{_{\mathbf{v}}}$ ee равна ^{0,6} Чему холодильника. этой 0,4 температура нагревателя тепловой машины? 300 600 900 1200

Потенциал поля точечного заряда q_1 в точке q_2 A равен -10 B, а потенциал поля точечного заряда q_0 в точке A равен 4 В. Каков будет в точке A потенциал поля, созданного зарядами q_1 и q_2 совместно?

1) -6 B

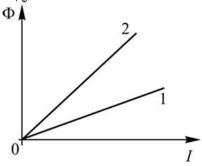
1) 900 K

2) –14 B

2) 1200 K

3) 6 B

3) 1500 K


4) 14 B

4) 2000 K

A14 Через участок электрической цепи, которого показана на течет рисунке, постоянный ток. Как относятся друг к другу силы токов I_1 и I_2 , текущих через резисторы 1 и 2?

- 1) $I_1:I_2=1:1$
- **2)** $I_1:I_2=2:3$
- **3)** $I_1:I_2=1:2$
- **4)** $I_1:I_2=2:1$

А15 На графике показаны зависимости магнитного пронизывающего катушку, от силы тока I для катушек 1 и 2. У какой из катушек больше индуктивность?

- **1)** У катушки 1
- **2**) У катушки 2
- 3) Индуктивности катушек одинаковы
- 4) Однозначно ответить нельзя

Какие из перечисленных колебательных процессов нельзя отнести к электромагнитным колебаниям?

- 1) Колебания заряда конденсатора в контуре, состоящем из конденсатора и катушки индуктивности.
- 2) Колебания силы тока в контуре, состоящем из конденсатора и катушки индуктивности.
- 3) Колебания груза на пружине в постоянном магнитном поле.
- 4) Ни один из описанных выше колебательных процессов.

Луч света распространяется в воде и падает на границу раздела водавоздух. Угол падения увеличивают. При угле падения α начинает наблюдаться полное внутреннее отражение света. Чему равен показатель преломления n воды?

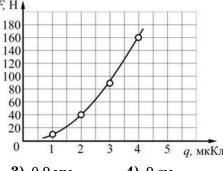
1)
$$n = \frac{1}{\sin \alpha}$$

$$2) n = \sin \alpha$$

$$2) n = \sin\alpha \qquad 3) n = \frac{1}{\cos\alpha}$$

4)
$$n = \cos \alpha$$

Оптик изготовил дифракционную решетку с периодом 1 мкм. Сколько штрихов приходится на каждый сантиметр длины этой решетки?


1)
$$10^3$$

2)
$$10^4$$

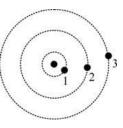
3)
$$10^5$$

4)
$$10^{-3}$$

На рисунке приведен график Е. Н зависимости силы F притяжения одинаковых точечных 160 неподвижных зарядов от модуля q ₁₄₀ каждого из зарядов. На каком 120 расстоянии друг друга 100 находятся эти заряды?

- **1)** 3 cm
- 2) 3 M
- **3)** 0,9 мм
- 4) 9 cm

Фотон может характеризоваться частотой ν или длиной волны λ . A20 Какая из нижеприведенных формул позволяет вычислить импульс р фотона? Скорость света равна с.


1)
$$p = hv$$

2)
$$p = h / v$$

$$3) p = h\lambda/c$$

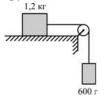
4)
$$p = h / \lambda$$

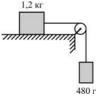
На рисунке схематически показаны стационарные орбиты электрона, обращающегося вокруг ядра в атоме водорода. На какой из этих орбит энергия электрона меньше?

- **1**) На орбите 1
- **2**) На орбите 2
- 3) На орбите 3
- 4) На всех трех орбитах энергия электрона одинаковая

A22 Вещество А состоит из одинаковых изотопов некоторого химического элемента. Вещество В состоит из других одинаковых изотопов того же химического элемента. Вещества А и В...

- 1) имеют одинаковые физические свойства, но разные химические свойства.
- 2) имеют одинаковые химические свойства, но разные физические свойства.
- 3) имеют разные физические и химические свойства.
- 4) имеют одинаковые физические и химические свойства.


A23


При проведении радиоуглеродного анализа древнего образца древесины ученые установили, что концентрация атомов углерода 14Св нем составляет 83% по сравнению с современными живыми деревьями. Из исторических источников было известно, что возраст этого образца составляет примерно 1500 лет. Считая, что в современном живом дереве концентрация атомов углерода ¹⁴С такая же, какой она была в живых деревьях в древние времена, определите период полураспада углерода ¹⁴С.

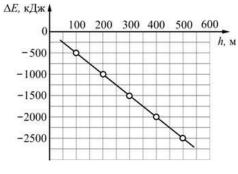
- **1**) ≈5600 лет
- **2)** ≈8050 лет
- **3)** ≈1250 лет
- **4)** ≈1800 лет

11

А24 На шероховатом горизонтальном столе находится брусок массой 1,2 кг. К бруску привязана нить, перекинутая через блок, который может вращаться практически без трения. К свисающему с блока концу нити последовательно прикрепляют грузы различной массы, как показано на рисунках. Какой вывод можно сделать на основании проведенных экспериментов о коэффициенте трения скольжения между бруском и столом?

Брусок движется с ускорением

Брусок покоится

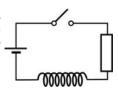

Брусок покоится

- 1) $\mu = 0.5$
- **2)** $\mu = 0.4$
- 3) 0.4 < u < 0.5
- 4) Никаких выводов о величине и сделать невозможно.

Клеть опускают в шахту вглубь ΔE , кДж земли. На графике приведена зависимость изменения потенциальной энергии ΔE клети от глубины h ее опускания.

Какое(-ие) из утверждений соответствует(-ют) этой зависимости?

- А. Масса клети равна 1000 кг.
- Б. Убыль потенциальной энергии клети при ее опускании вглубь земли прямо пропорциональна глубине опускания.



- только А
- **2**) только Б
- 3) и А, и Б
- 4) ни А. ни Б

Часть 2

(B1-B4)Ответом заданиям этой части является последовательность цифр. Впишите ответы сначала в текст работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания, начиная с первой клеточки, без пробелов и каких-либо дополнительных символов. Каждую иифру пишите в отдельной клеточке в соответствии с приведёнными в бланке образиами.

В электрической цепи, схема которой изображена на рисунке, замыкают ключ. Как изменяются после физические замыкания ключа следующие величины: сила тока в цепи, энергия магнитного поля катушки, модуль действующей в катушке ЭДС самоиндукции?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ **ИЗМЕНЕНИЕ**

А) сила тока в цепи

- 1) увеличивается
- **Б)** энергия магнитного поля катушки
- 2) уменьшается
- В) выделяемая в резисторе тепловая мошность
- 3) не изменяется

^	A	Б
Ответ:		

	A	Б	В
гвет:			

В закрытом сосуде под поршнем находятся воздух и ненасыщенные пары воды. Медленно двигая поршень, объем сосуда уменьшают, сохраняя температуру постоянной и не допуская начала процесса конденсации воды. Как в результате изменятся следующие физические величины: концентрация паров воды в сосуде, абсолютная влажность воздуха, давление насыщенных паров воды? Пля каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

их изменение

- А) концентрация паров воды в сосуде
- 1) увеличится
- **Б)** абсолютная влажность воздуха
- **2**) уменьшится
- В) давление насыщенных паров воды
- 3) не изменится

 \mathbf{B} Ответ:

B3 Идеальный одноатомный газ в количестве v моль находится в закрытом сосуде объемом V. При нагревании давление газа возрастает на величину Δp . Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

- А) изменение температуры газа
- Б) количество теплоты, сообщенное газу
- **1)** $\frac{3}{2}V\Delta p$ **2)** $V\Delta p$
- $3) \ \frac{3V\Delta p}{2vR}$

Б Ответ:

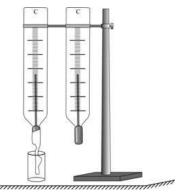
Маленький шарик падает без начальной скорости с у некоторой высоты на закрепленную горизонтально стальную плиту и начинает подпрыгивать на ней. Потерь механической энергии нет. Принимая за начало процесса (t = 0) момент времени, в который шарик начинает падать, установите соответствие между графиками и физическими величинами, 0зависимости которых от времени эти графики могут

представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) координата шарика
- проекция скорости шарика на вертикальную ось
- 3) проекция ускорения шарика на вертикальную ось
- 4) кинетическая энергия шарика

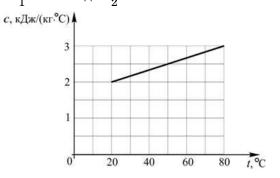

A) Б) Б

Ответ:

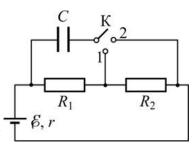
Часть 3

Задания С1-С6 представляют собой задачи, полное решение которых необходимо записать в бланке ответов № 2. Рекомендуется провести предварительное решение на черновике. При оформлении решения в бланке ответов № 2 запишите chauaa номер задания (C1 u m. d.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво. Полное правильное решение каждой из задач С2-С6 должно включать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и. при необходимости, рисунок, поясняющий решение.

Два одинаковых спиртовых термометра, закрепленных в штативе, находятся в комнате. Нижняя часть одного из них обмотана марлевым жгутом, свободный конец которого помещен в пустой стаканчик. В стаканчик наливают воду комнатной температуры, смочив всю марлю. Опишите, как и почему после этого будут изменяться показания термометров.


C2двух ровных досок сделан представляющий собой двугранный угол с раствором $2\alpha = 90^{\circ}$. Желоб закреплен так, что его ребро горизонтально, а доски симметричны относительно вертикали. В желобе на боковой поверхности лежит цилиндр массой $m = 1 \, \text{кг.}$ Коэффициент трения между досками и цилиндром

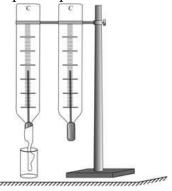
равен $\mu = 0.2$. К торцу цилиндра приложена горизонтально направленная сила F = 3 H. Найдите модуль ускорения цилиндра.


Физика. 11 класс. Вариант 2

17

На рисунке приведен график зависимости удельной теплоемкости c некоторого тела от его температуры t. Какое количество теплоты Q нужно сообщить этому телу для того, чтобы повысить его температуру от $t_1=20~{\rm ^{\circ}C}$ до $t_2=80~{\rm ^{\circ}C}$? Масса тела $m=1~{\rm kr}$.

С4 В электрической цепи, схема которой изображена на рисунке, конденсатор С изначально не заряжен. Ключ К переводят в положение 1. Затем, спустя очень большое время, переключают его в положение 2, и снова ждут в течение достаточно большого промежутка времени. В результате перевода ключа в положение 2 энергия конденсатора увеличивается в n=9 раз. Найдите сопротивление резистора R_2 , если $R_1=10$ Ом.


- С5 При помощи тонкой собирающей линзы на экране, перпендикулярном главной оптической оси линзы, получено четкое изображение точечного источника света. Не трогая источник и экран, линзу передвинули от источника в сторону экрана на расстояние x=5 см, в результате чего на экране вновь получилось четкое изображение источника. Чему равно фокусное расстояние линзы, если изначально источник находился на расстоянии a=10 см от нее? Линзу перемещают вдоль ее главной оптической оси.
- С6 Узкий пучок света с длиной волны $\lambda = 420 \, \text{нм}$ падает на фотоприемник. Мощность светового потока этого пучка равна $P = 3, 3 \cdot 10^{-18} \, \text{Вт.}$ Найдите число n фотонов, падающих на фотоприемник за одну секунду.

C1

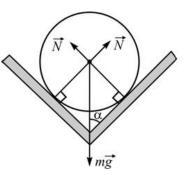
1

Критерии оценивания заданий с развёрнутым ответом

Два одинаковых спиртовых термометра, закрепленных в штативе, находятся в комнате. Нижняя часть одного из них обмотана марлевым жгутом, свободный конец которого помещен в пустой стаканчик. В стаканчик наливают воду комнатной температуры, смочив всю марлю. Опишите, как и почему после этого будут изменяться показания термометров.

Образец возможного решения

- 1) Налитая в стаканчик вода начнет испаряться, причем испарение будет происходить как с поверхности воды в стаканчике, так и со всей поверхности влажной марли. Внутренняя энергия воды, стаканчика, марли и обмотанного ею термометра будет уменьшаться вследствие испарения. Из-за этого термометр (он называется "влажным") будет охлаждаться, и его температура станет меньше, чем у окружающего воздуха. В результате показания "влажного" термометра начнут уменьшаться, т.е. он будет показывать всё более низкую температуру. Показания другого термометра (он называется "сухим") изменяться не будут.
- 2) Наряду с процессом испарения воды происходит и обратный процесс конденсация пара. При конденсации пара внутренняя энергия воды, стаканчика, марли и обмотанного ею термометра увеличивается. Поэтому показания "влажного" термометра перестанут уменьшаться и установятся тогда, когда количество теплоты, теряемое им из-за испарения воды, сравняется с количеством теплоты, получаемым термометром при конденсации пара. Установившиеся показания "влажного" термометра будут однозначно определяться влажностью воздуха в комнате и температурой воздуха в комнате (то есть показаниями "сухого" термометра).


Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный ответ (в данном случае – испарение воды, охлаждение термометра в результате отъема от него теплоты вследствие испарения, связь между установившимися показаниями «влажного» термометра и влажностью воздуха).	3
Приведено решение и дан верный ответ, но имеется один из следующих недостатков: — в объяснении содержатся лишь общие рассуждения без привязки к конкретной ситуации задачи, хотя указаны все необходимые физические явления и законы; ИЛИ — рассуждения, приводящие к ответу, представлены не в полном объеме или в них содержатся логические недочеты; ИЛИ — указаны не все физические явления и законы, необходимые для	2
полного правильного решения.	
Представлены записи, соответствующие одному из следующих случаев: – приведены рассуждения с указанием на физические явления и законы, но дан неверный или неполный ответ; ИЛИ – приведены рассуждения с указанием на физические явления и	1
законы, но ответ не дан; ИЛИ – представлен только правильный ответ без обоснований. Все случаи решения, которые не соответствуют вышеуказанным	
критериям выставления оценок в 1, 2, 3 балла.	U

C2

Из двух ровных досок сделан желоб, представляющий собой двугранный угол с раствором $2\alpha=90^\circ$. Желоб закреплен так, что его ребро горизонтально, а доски симметричны относительно вертикали. В желобе на боковой поверхности лежит цилиндр массой m=1 кг. Коэффициент трения между досками и цилиндром равен $\mu=0,2$. К торцу цилиндра приложена горизонтально направленная сила F=3 Н. Найдите модуль ускорения цилиндра.

Образец возможного решения

Изобразим вид на желоб со стороны торца цилиндра. На цилиндр в плоскости чертежа действуют направленная вниз сила тяжести $m \vec{g}$ и две равные по модулю силы реакции \vec{N} досок, направленные перпендикулярно стенкам желоба. Так как цилиндр не движется в вертикальном направлении, то, в соответствии со вторым законом Ньютона, сумма проекций этих трех сил на вертикаль равна нулю:

$$mg = 2N\cos\left(\frac{\pi}{2} - \alpha\right) = 2N\sin\alpha$$
, где $\alpha = 45^{\circ}$.

Отсюда $N = \frac{mg}{2\sin a}$.

В горизонтальном направлении (вдоль желоба) на цилиндр действуют сила \overrightarrow{F} , а также, в противоположном направлении, две силы сухого трения $\overrightarrow{F_{\text{TD}}}$.

Предположим, что цилиндр будет двигаться по желобу. Тогда по закону Амонтона-Кулона для силы сухого трения скольжения можно записать:

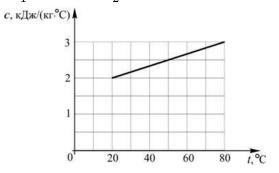
$$F_{\rm Tp} = \mu N = \frac{\mu mg}{2\sin\alpha}$$
.

Записывая второй закон Ньютона в проекции на горизонтальную ось, направленную вдоль ребра желоба, получим:

$$ma = F - 2F_{\rm Tp} = F - \frac{\mu mg}{\sin \alpha}$$

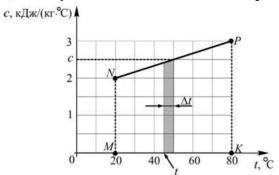
где a – модуль искомого ускорения цилиндра. Заметим, что $F>\frac{\mu mg}{\sin a}$

Это означает, что приложенная к торцу цилиндра сила превышает силу трения покоя, то есть цилиндр и в самом деле будет скользить вдоль желоба. Следовательно, $a = \frac{F}{m} - \frac{\mu g}{\sin \alpha}$. Подставляя числовые данные и проверяя размерность, окончательно получим:


$$a = \frac{F}{m} - \frac{\mu g}{\sin \alpha} = (3 - 2\sqrt{2}) \text{ m/c}^2 \approx 0, 2 \text{ m/c}^2.$$

Ответ:
$$a = \frac{F}{m} - \frac{\mu g}{\sin \alpha} \approx 0.2 \text{ m/c}^2.$$

Баллы Критерии оценки выполнения задания Приведено полное правильное решение, включающее следующие элементы: 1) правильно сделан чертеж и записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении – правильно указаны направления сил тяжести и реакции досок, записан второй закон Ньютона в проекциях на вертикальную и горизонтальную оси, применен закон Амонтона-Кулона для определения модуля силы трения скольжения); 2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями). Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков: - в необходимых математических преобразованиях или вычислениях лопушена ошибка: ИЛИ необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены; ИЛИ – не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде; или решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа. Представлены записи, соответствующие одному из следующих случаев: - представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа; ИЛЙ - в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ - в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.


C3

На рисунке приведен график зависимости удельной теплоемкости c некоторого тела от его температуры t. Какое количество теплоты Q нужно сообщить этому телу для того, чтобы повысить его температуру от $t_1=20~{\rm ^{\circ}C}$ до $t_2=80~{\rm ^{\circ}C}$? Масса тела $m=1~{\rm Kr}$.

Образец возможного решения

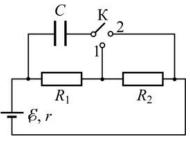
<u>Способ 1.</u> Пусть тело имеет некоторую температуру t и при нагревании его температура возрастает на малую величину Δt . При этом, в соответствии с уравнением теплового баланса, телу сообщается количество теплоты $\Delta Q = cm\Delta t$, где c – удельная теплоемкость тела при температуре t.

На графике зависимости удельной теплоемкости тела от температуры величине ΔQ соответствует площадь прямоугольника с высотой с (так как m=1 кг) и с основанием Δt . Поэтому полному количеству теплоты Q, необходимому для нагревания тела от температуры t_1 до температуры t_2 , будет соответствовать площадь трапеции MNPK.

Обозначим удельную теплоемкость при температуре t_1 через c_1 , а удельную теплоемкость при температуре t_2 через c_2 . Тогда искомое количество теплоты

$$Q = \frac{1}{2} \left(c_1 + c_2 \right) m \left(t_2 - t_1 \right) =$$

$$=\frac{1}{2}\cdot\left(2000\;\frac{\mbox{Дж}}{\mbox{кг}\cdot\mbox{°C}}+3000\;\frac{\mbox{Дж}}{\mbox{кг}\cdot\mbox{°C}}\right)\cdot 1\;\mbox{кг}\cdot\left(80\;\mbox{°C}-20\;\mbox{°C}\right)=150\;\mbox{кДж}.$$


Способ 2. Так как удельная теплоемкость линейно возрастает с ростом температуры, то количество теплоты, которое нужно затратить на нагревание тела от температуры t_1 до температуры t_2 , может быть найдено по формуле $Q = c_{\rm cp} m(t_2 - t_1)$, где $c_{\rm cp} = \frac{1}{2}(c_1 + c_2)$ – средняя удельная теплоемкость, которую имеет тело в интервале температур от t_1 до t_2 . Отсюда сразу получаем тот же результат: $Q = \frac{1}{2}(c_1 + c_2)m(t_2 - t_1) = 150$ кДж.

Ответ: $Q = \frac{1}{2}(c_1 + c_2)m(t_2 - t_1) = 150$ кДж.

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие элементы: 1) правильно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении – уравнение теплового баланса, формула для определения количества теплоты как величины, численно равной площади под графиком зависимости удельной теплоемкости от температуры; либо вычисление количества теплоты через среднюю теплоемкость); 2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, и представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями).	3
Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков: — в необходимых математических преобразованиях или вычислениях допущена ошибка; ИЛИ — необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены; ИЛИ — не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде; ИЛИ — решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа.	2
Представлены записи, соответствующие одному из следующих случаев: — представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа; ИЛИ — в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ — в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.	0

C4

В электрической цепи, схема которой изображена на рисунке, конденсатор С изначально не заряжен. Ключ К переводят в положение 1. Затем, спустя очень большое время, переключают его в положение 2, и снова ждут в течение достаточно большого промежутка времени. В результате перевода ключа в положение 2 энергия конденсатора увеличивается в n=9 раз. Найдите сопротивление резистора R_2 , если $R_1=10$ Ом.

Образец возможного решения

Обозначим напряжение на конденсаторе после перевода ключа в положение 1 через U_1 , а после перевода ключа в положение 2 — через U_2 . Поскольку энергия $\mathcal E$ конденсатора, заряженного до напряжения U, равна $\mathcal E = CU^2/2$, то отношение энергии конденсатора при положении ключа 2 к энергии конденсатора при положении ключа 1 равно

$$n = \frac{E_2}{E_1} = \frac{CU_2^2 / 2}{CU_1^2 / 2} = \frac{U_2^2}{U_1^2}.$$

Пусть сила тока, текущего через резисторы, равна I. При этом напряжения U_1 и U_2 на конденсаторе равны напряжениям на соответствующих участках цепи, имеющих сопротивления R_1 и R_1+R_2 . На основании закона Ома для участка цепи, получаем:

$$U_1 = I R_1 \text{ if } U_2 = I(R_1 + R_2).$$

Следовательно,
$$n = \frac{U_2^2}{U_1^2} = \left(\frac{R_1 + R_2}{R_1}\right)^2 = \left(1 + \frac{R_2}{R_1}\right)^2$$
.

Отсюда $R_2 = R_1(\sqrt{n} - 1) = 20$ Ом.

Otbet: $R_2 = R_1(\sqrt{n} - 1) = 20 \text{ Om.}$

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие элементы: 1) правильно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении — формула для расчета энергии заряженного конденсатора, формула для вычисления сопротивления при последовательном соединении резисторов, закон Ома для участка цепи); 2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, и представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями).	3
Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков: – в необходимых математических преобразованиях или вычислениях допущена ошибка; ИЛИ – необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены; ИЛИ – не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде; ИЛИ – решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа.	2
Представлены записи, соответствующие одному из следующих случаев: — представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа; ИЛИ — в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ — в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.	0

C5

При помощи тонкой собирающей линзы на экране, перпендикулярном главной оптической оси линзы, получено четкое изображение точечного источника света. Не трогая источник и экран, линзу передвинули от источника в сторону экрана на расстояние $x=5\,\mathrm{cm}$, в результате чего на экране вновь получилось четкое изображение источника. Чему равно фокусное расстояние линзы, если изначально источник находился на расстоянии $a=10\,\mathrm{cm}$ от нее? Линзу перемещают вдоль ее главной оптической оси.

Образец возможного решения

Пусть в начальном положении экран находился на расстоянии b от линзы. Применим формулу тонкой линзы для начального и для конечного положения источника света:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F}, \qquad \frac{1}{a+x} + \frac{1}{b-x} = \frac{1}{F}.$$

Из этих формул следует уравнение: $\frac{1}{a} + \frac{1}{b} = \frac{1}{a+x} + \frac{1}{b-x}$.

Решая его, получаем: x = b - a.

Тогда для отыскания фокусного расстояния линзы получаем уравнение: $\frac{1}{a} + \frac{1}{a+x} = \frac{1}{F}$, откуда $F = \frac{a(a+x)}{2a+x}$.

Подставляя числовые значения и проверяя размерность, находим: F = 6 см.

Ответ:
$$F = \frac{a(a+x)}{2a+x} = 6 \text{ cm}.$$

Критории опонии выполнония золония	
Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие элементы: 1) правильно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении – формула тонкой линзы для двух положений линзы); 2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, и представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями).	3
Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков: – в необходимых математических преобразованиях или вычислениях допущена ошибка;	
ИЛИ — необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены; ИЛИ — не представлены преобразования, приводящие к ответу, но записан	2
правильный числовой ответ или ответ в общем виде; ИЛИ – решение содержит ошибку в необходимых математических	
преобразованиях и не доведено до числового ответа. Представлены записи, соответствующие одному из следующих случаев:	
– представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа; ИЛИ	
 в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ 	1
– в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.	0

C6

Узкий пучок света с длиной волны $\lambda=420\,\,\mathrm{hm}$ падает на фотоприемник. Мощность светового потока этого пучка равна $P=3,3\cdot10^{-18}\,\mathrm{Br}$. Найдите число n фотонов, падающих на фотоприемник за одну секунду.

Образец возможного решения

Пусть за время t=1 с на фотоприемник падают k фотонов. Тогда энергия, переносимая световым пучком, равна $E=k\cdot hv$, где n – частота световой волны, hv – энергия одного фотона. Мощность светового потока пучка света равна энергии, переносимой им в единицу времени, то есть $P=\frac{E}{t}=\frac{khv}{t}$. Величина $n=\frac{k}{t}$ представляет собой искомое число фотонов, падающих на

фотоприемник за одну секунду. Таким образом P = nhv.

Учитывая, что частота световой волны связана с ее длиной формулой $v=\frac{c}{\lambda},$

получим $P = nh \cdot \frac{c}{\lambda}$, откуда $n = \frac{P\lambda}{hc}$.

Подставляя числовые значения и проверяя размерность, получим:

$$n = \frac{P\lambda}{hc} = \frac{(3, 3 \cdot 10^{-18} \text{ Bt}) \cdot (420 \cdot 10^{-9} \text{ M})}{(6, 6 \cdot 10^{-34} \text{ Дж} \cdot \text{c}) \cdot (3 \cdot 10^8 \text{ M/c})} = 7.$$

Ответ:
$$n = \frac{P\lambda}{hc} = 7$$
.

Критерии оценки выполнения задания	
Приведено полное правильное решение, включающее следующие элементы: 1) правильно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом (в данном решении – выражение для энергии фотона, связь переносимой световым пучком энергии с мощностью светового потока, связь частоты световой волны с ее длиной); 2) проведены необходимые математические преобразования и расчеты, приводящие к правильному числовому ответу, и представлен ответ; при этом допускается решение «по частям» (с промежуточными вычислениями).	3
Представленное решение содержит п.1 полного решения, но и имеет один из следующих недостатков: — в необходимых математических преобразованиях или вычислениях допущена ошибка; ИЛИ — необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены; ИЛИ — не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде; ИЛИ — решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа.	2
Представлены записи, соответствующие одному из следующих случаев: — представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа; ИЛИ — в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ — в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.	1
все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.	0

Ответы к заданиям с выбором ответа

№ задания	Ответ
A1	2
A2	2
A3	1
A4	1
A5	2
A6	4
A7	3
A8	4
A9	2
A10	3
A11	2
A12	3
A13	4

№ задания	Ответ
A14	2
A15	1
A16	3
A17	2
A18	3
A19	3
A20	1
A21	3
A22	3
A23	4
A24	3
A25	3

Ответы к заданиям с кратким ответом

№ задания	Ответ
B1	122
B2	223

№ задания	Ответ
В3	32
B4	41

Ответы к заданиям с выбором ответа

№ задания	Ответ
A1	3
A2	1
A3	1
A4	3
A5	3
A6	1
A7	4
A8	1
A9	3
A10	4
A11	1
A12	3
A13	1

№ задания	Ответ
A14	4
A15	2
A16	3
A17	1
A18	2
A19	1
A20	4
A21	1
A22	2
A23	1
A24	3
A25	2

Ответы к заданиям с кратким ответом

№ задания	Ответ
B1	111
B2	113

№ задания	Ответ
В3	41
B4	41